forked from luminositylab/CL-AFF-ST
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdcec_xval_pred.py
562 lines (456 loc) · 25.1 KB
/
dcec_xval_pred.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
from typing import Iterator, List, Dict
#import statements for torch and parts in it we need
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
from torch.autograd import Variable
import torch.nn.functional as F
import pandas as pd
#AllenNLP imports for dataset stuff
from allennlp.data import Instance
from allennlp.data.fields import TextField, LabelField
#import statement for regular expressions (enables parsing out non alphanumerics)
import re
from allennlp.data.dataset_readers import DatasetReader
from allennlp.common.file_utils import cached_path
#AllenNLP tokenizing stuff, more dataset related things
from allennlp.data.token_indexers import TokenIndexer, SingleIdTokenIndexer
from allennlp.data.tokenizers import Token
from allennlp.data.vocabulary import Vocabulary
#AllenNLP model stuff
from allennlp.models import Model
from allennlp.modules.text_field_embedders import TextFieldEmbedder, BasicTextFieldEmbedder
from allennlp.modules.token_embedders import Embedding
from allennlp.modules.seq2seq_encoders import Seq2SeqEncoder, PytorchSeq2SeqWrapper
from allennlp.modules.seq2vec_encoders import Seq2VecEncoder, PytorchSeq2VecWrapper
from allennlp.nn.util import get_text_field_mask, sequence_cross_entropy_with_logits
from allennlp.training.metrics.mean_absolute_error import MeanAbsoluteError
from allennlp.training.metrics.boolean_accuracy import BooleanAccuracy
from allennlp.training.metrics.f1_measure import F1Measure
from allennlp.data.iterators import BucketIterator
from allennlp.training.trainer import Trainer, move_optimizer_to_cuda
from allennlp.predictors import SentenceTaggerPredictor
#Custom seq2vecpredictor implemented based on the seq2seqpredictor example provided by allenNLP
#(not a big difference)
#ELMo stuff
from allennlp.data.token_indexers.elmo_indexer import ELMoCharacterMapper, ELMoTokenCharactersIndexer
from allennlp.modules.elmo import batch_to_ids
from cl_aff_utils.predictors import SentenceSeq2VecPredictor
from cl_aff_utils.elmo_cuda import Elmo
from cl_aff_utils.embedders import ELMoTextFieldEmbedder
#for debug
import time
import csv
#torch.manual_seed(1)
from sklearn import metrics
class CLAFFDatasetReaderELMo(DatasetReader):
"""
DatasetReader for CL-AFF labelled data
Structure is Number, sentence, concepts, agency, social, ...
"""
#SingleIdTokenIndexer is the class that links each word in the vocabulary to its token
#we will be generating ours and thus using the singleidtoken indexer
def __init__(self, token_indexers: Dict[str, TokenIndexer] = None) -> None:
super().__init__(lazy=False)
#changing this line is what's important for ELMo vectors. This basically makes it so that the sentence
#field will contain a sequence of character ids rather than word id tokens, this becomes important
#when it's actually fed into the ELMo model for generating vectors.
self.token_indexers = token_indexers or {"character_ids": ELMoTokenCharactersIndexer()}
#this function converts a sentence into the appropriate instance type and has to be adapted to
#the model
def text_to_instance(self, tokens: List[Token], agency:str = None, social:str = None) -> Instance:
sentence_field = TextField(tokens, self.token_indexers)
fields = {"sentence": sentence_field}
if agency:
agency_field = LabelField(label=agency)
fields["agency"] = agency_field
if social:
social_field = LabelField(label=social)
fields["social"] = social_field
return Instance(fields)
#this is the outermost function and it gets automatically called at the reader.read() step in main
#it yields the outputs of text_to_instance which produces instance objects containing the keyed values
#for agency, social, and the sentence itself as an iterator of instances. This fxn depends on the dataset
#in use.
def _read(self, file_path: str) -> Iterator[Instance]:
with open(file_path) as f:
#skip line one, check if labeled set
firstline = next(f)
isLabeled = firstline.split(',')[2].strip('"') == 'concepts'
#now, read in data
#regex to get rid of non-alphanumeric
#remover = re.compile('[\W_]+')
for line in f:
sets = line.split(',')
sentence = sets[1].strip('"').split()
if isLabeled:
agency = sets[3].strip('"')
social = sets[4].strip('"')
if str(agency) != 'no':
agency = 'yes'
if str(social) != 'no':
social = 'yes'
else:
agency = None
social = None
#out = [str(agency), str(social)]
#yield self.text_to_instance([Token(remover.sub('',word)) for word in sentence], agency, social)
yield self.text_to_instance([Token(word) for word in sentence],str(agency), str(social))
class CLAFFDatasetReaderELMofromDataFrame(DatasetReader):
"""
DatasetReader for CL-AFF labelled data
Structure is Number, sentence, concepts, agency, social, ...
"""
#SingleIdTokenIndexer is the class that links each word in the vocabulary to its token
#we will be generating ours and thus using the singleidtoken indexer
def __init__(self, token_indexers: Dict[str, TokenIndexer] = None) -> None:
super().__init__(lazy=False)
#changing this line is what's important for ELMo vectors. This basically makes it so that the sentence
#field will contain a sequence of character ids rather than word id tokens, this becomes important
#when it's actually fed into the ELMo model for generating vectors.
self.token_indexers = token_indexers or {"character_ids": ELMoTokenCharactersIndexer()}
#this function converts a sentence into the appropriate instance type and has to be adapted to
#the model
def text_to_instance(self, tokens: List[Token], agency:str = None, social:str = None) -> Instance:
sentence_field = TextField(tokens, self.token_indexers)
fields = {"sentence": sentence_field}
if agency:
agency_field = LabelField(label=agency)
fields["agency"] = agency_field
if social:
social_field = LabelField(label=social)
fields["social"] = social_field
return Instance(fields)
#this is the outermost function and it gets automatically called at the reader.read() step in main
#it yields the outputs of text_to_instance which produces instance objects containing the keyed values
#for agency, social, and the sentence itself as an iterator of instances. This fxn depends on the dataset
#in use.
def _read(self, df: pd.DataFrame) -> Iterator[Instance]:
#skip line one, check if labeled set
#firstline = next(f)
#isLabeled = firstline.split(',')[2].strip('"') == 'concepts'
#now, read in data
#regex to get rid of non-alphanumeric
#remover = re.compile('[\W_]+')
#we only use this reader to read in the labeled 10k that gets cross val'd
for line in df.iterrows():
#sets = line.split(',')
sentence = line[1][1].split()
agency = line[1][3]
social = line[1][4]
if str(agency) != 'no':
agency = 'yes'
if str(social) != 'no':
social = 'yes'
#out = [str(agency), str(social)]
#yield self.text_to_instance([Token(remover.sub('',word)) for word in sentence], agency, social)
yield self.text_to_instance([Token(word) for word in sentence],str(agency), str(social))
class CLAFFDatasetReaderELMoTest(DatasetReader):
"""
DatasetReader for CL-AFF labelled data
Structure is Number, sentence, concepts, agency, social, ...
"""
#SingleIdTokenIndexer is the class that links each word in the vocabulary to its token
#we will be generating ours and thus using the singleidtoken indexer
def __init__(self, token_indexers: Dict[str, TokenIndexer] = None) -> None:
super().__init__(lazy=False)
#changing this line is what's important for ELMo vectors. This basically makes it so that the sentence
#field will contain a sequence of character ids rather than word id tokens, this becomes important
#when it's actually fed into the ELMo model for generating vectors.
self.token_indexers = token_indexers or {"character_ids": ELMoTokenCharactersIndexer()}
#this function converts a sentence into the appropriate instance type and has to be adapted to
#the model
def text_to_instance(self, tokens: List[Token], hmid:int = None) -> Instance:
sentence_field = TextField(tokens, self.token_indexers)
fields = {"sentence": sentence_field}
hmid_field = LabelField(label=hmid,skip_indexing=True)
fields["hmid"] = hmid_field
return Instance(fields)
#this is the outermost function and it gets automatically called at the reader.read() step in main
#it yields the outputs of text_to_instance which produces instance objects containing the keyed values
#for agency, social, and the sentence itself as an iterator of instances. This fxn depends on the dataset
#in use.
def _read(self, file_path: str) -> Iterator[Instance]:
with open(file_path) as f:
#skip line one, check if labeled set
firstline = next(f)
isLabeled = firstline.split(',')[2].strip('"') == 'concepts'
#now, read in data
#regex to get rid of non-alphanumeric
#remover = re.compile('[\W_]+')
for line in f:
sets = line.split(',')
sentence = sets[1].strip('"').split()
hmid = sets[0].strip('"')
#out = [str(agency), str(social)]
#yield self.text_to_instance([Token(remover.sub('',word)) for word in sentence], agency, social)
yield self.text_to_instance([Token(word) for word in sentence],int(hmid))
class CLAFFDatasetReaderTestELMofromDataFrame(DatasetReader):
"""
DatasetReader for CL-AFF labelled data
Structure is Number, sentence, concepts, agency, social, ...
"""
#SingleIdTokenIndexer is the class that links each word in the vocabulary to its token
#we will be generating ours and thus using the singleidtoken indexer
def __init__(self, token_indexers: Dict[str, TokenIndexer] = None) -> None:
super().__init__(lazy=False)
#changing this line is what's important for ELMo vectors. This basically makes it so that the sentence
#field will contain a sequence of character ids rather than word id tokens, this becomes important
#when it's actually fed into the ELMo model for generating vectors.
self.token_indexers = token_indexers or {"character_ids": ELMoTokenCharactersIndexer()}
#this function converts a sentence into the appropriate instance type and has to be adapted to
#the model
def text_to_instance(self, tokens: List[Token], hmid:int) -> Instance:
sentence_field = TextField(tokens, self.token_indexers)
fields = {"sentence": sentence_field}
hmid_field = LabelField(label=hmid,skip_indexing=True)
fields["hmid"] = hmid_field
return Instance(fields)
#this is the outermost function and it gets automatically called at the reader.read() step in main
#it yields the outputs of text_to_instance which produces instance objects containing the keyed values
#for agency, social, and the sentence itself as an iterator of instances. This fxn depends on the dataset
#in use.
def _read(self, df: pd.DataFrame) -> Iterator[Instance]:
#skip line one, check if labeled set
#firstline = next(f)
#isLabeled = firstline.split(',')[2].strip('"') == 'concepts'
#now, read in data
#regex to get rid of non-alphanumeric
#remover = re.compile('[\W_]+')
#we only use this reader to read in the labeled 10k that gets cross val'd
for line in df.rows:
#sets = line.split(',')
sentence = line['moment'].split()
hmid = line['hmid']
if str(agency) != 'no':
agency = 'yes'
if str(social) != 'no':
social = 'yes'
#out = [str(agency), str(social)]
#yield self.text_to_instance([Token(remover.sub('',word)) for word in sentence], agency, social)
yield self.text_to_instance([Token(word) for word in sentence],int(hmid))
class BigramDilatedConvModel(Model):
"""
LSTM model for predicting two labels Social and Agency for the CL-AFF labelled data
"""
def __init__(self,
#Type of word embeddings
word_embeddings: TextFieldEmbedder,
#Type of encoder
vocab: Vocabulary,
#Change loss function here
lossmetric = torch.nn.MSELoss()) -> None:
super().__init__(vocab)
EMBEDDING_SIZE = 1024
WORD_CLASSES = 100
CONV_OUTPUT_SIZE = 50
self.word_embeddings = word_embeddings
self.word_class_probs1 = torch.nn.Linear(in_features = EMBEDDING_SIZE, out_features = WORD_CLASSES)
self.word_class_probs2 = torch.nn.Linear(in_features = WORD_CLASSES, out_features = WORD_CLASSES)
self.conv_filterbank1 = torch.nn.Conv1d(WORD_CLASSES,CONV_OUTPUT_SIZE,2,dilation=1,padding=1)
self.conv_filterbank2 = torch.nn.Conv1d(WORD_CLASSES,CONV_OUTPUT_SIZE,2,dilation=2,padding=1)
self.conv_filterbank3 = torch.nn.Conv1d(WORD_CLASSES,CONV_OUTPUT_SIZE,2,dilation=3,padding=2)
self.conv_filterbank4 = torch.nn.Conv1d(WORD_CLASSES,CONV_OUTPUT_SIZE,2,dilation=4,padding=2)
self.conv_filterbank5 = torch.nn.Conv1d(WORD_CLASSES,CONV_OUTPUT_SIZE,2,dilation=5,padding=3)
self.pool1 = torch.nn.AdaptiveMaxPool1d(1)
self.pool2 = torch.nn.AdaptiveMaxPool1d(1)
self.pool3 = torch.nn.AdaptiveMaxPool1d(1)
self.pool4 = torch.nn.AdaptiveMaxPool1d(1)
self.pool5 = torch.nn.AdaptiveMaxPool1d(1)
self.recurrent_pool = torch.nn.LSTM(CONV_OUTPUT_SIZE, CONV_OUTPUT_SIZE, batch_first=True, bidirectional=True)
self.hidden2tag = torch.nn.Linear(in_features=CONV_OUTPUT_SIZE*5,
out_features=2)
#Initializing accuracy, loss and softmax variables
self.accuracy = BooleanAccuracy()
self.loss = lossmetric
self.evalmode = False
def set_evalmode(self, mode: bool):
self.evalmode = mode
#I have gathered that the trainer method from allenNLP goes through the forward, loss = backward
#sequence on its own and it searches for the keys in the instances that get passed as the arguments to
#forward. It also automatically will convert labelField values from their number to their torch.Tensor
#value when they get passed in, and will pass sentences as dictionaries of words tied to their torch tensor
#token values. Inside the trainer function the unwrapping of and iterating over of instances is handled, so
#we implement our forward pass function on the batched set of sentences level.
def forward(self,
sentence: Dict[str, torch.Tensor],
agency: torch.Tensor = None,
social: torch.Tensor = None) -> torch.Tensor:
#Mask to pad shorter sentences
mask = get_text_field_mask(sentence).cuda()
#Convert input into word embeddings
embeddings = self.word_embeddings(sentence)
wordclass1 = torch.nn.functional.relu(self.word_class_probs1(embeddings))
#wordclass2 = torch.nn.functional.relu(self.word_class_probs2(wordclass1))
#wordclass3 = torch.nn.functional.relu(self.word_class_probs3(wordclass2))
#wordclass4 = torch.nn.functional.relu(self.word_class_probs4(wordclass3))
#wordclass5 = torch.nn.functional.relu(self.word_class_probs4(wordclass4))
final_word_class = torch.sigmoid(self.word_class_probs2(wordclass1)).permute(0,2,1)
#for certain debugging purposes
#time.sleep(20)
#print(embeddings.shape)
#rather than the encoder we perform the set of convolutions
cset_1 = self.conv_filterbank1(final_word_class).permute(0,2,1)
cset_2 = self.conv_filterbank2(final_word_class).permute(0,2,1)
cset_3 = self.conv_filterbank3(final_word_class).permute(0,2,1)
cset_4 = self.conv_filterbank4(final_word_class).permute(0,2,1)
cset_5 = self.conv_filterbank5(final_word_class).permute(0,2,1)
pool_1 = torch.sum(self.recurrent_pool(cset_1)[1][0],dim=0).squeeze()
pool_2 = torch.sum(self.recurrent_pool(cset_2)[1][0],dim=0).squeeze()
pool_3 = torch.sum(self.recurrent_pool(cset_3)[1][0],dim=0).squeeze()
pool_4 = torch.sum(self.recurrent_pool(cset_4)[1][0],dim=0).squeeze()
pool_5 = torch.sum(self.recurrent_pool(cset_5)[1][0],dim=0).squeeze()
hidden_representation = torch.cat((pool_1,pool_2,pool_3,pool_4,pool_5),dim=-1)
#print(hidden_representation.shape)
#hidden_representation = torch.cat((lin_comp_1,lin_comp_2,lin_comp_3,lin_comp_4,lin_comp_5),dim=1)
#encoder_out = torch.nn.ReLU(hidden_representation)
#the output from hidden2tag, a fully-connected linear layer converting the LSTM hidden state to
#the two labels
lin_output = self.hidden2tag(hidden_representation)
#output_score is a list of 2 variables which update the scores for social and agency class
#output_score = lin_output
#output_score = self.sigmoid(output_score)
output_score = torch.sigmoid(lin_output)
if self.evalmode:
self.os = output_score
output = {"score": output_score}
#print(output_score.shape)
#output_score = torch.sigmoid(output_score)
if social is not None and agency is not None:
#Unsqueeze(reshape) the tags to convert them to concatenatable format
social_sq = social.unsqueeze(1)
agency_sq = agency.unsqueeze(1)
#Concat the two tags as a single variable to be passed into the loss function
labels = torch.cat((social_sq,agency_sq),dim=1)
#Accuracy(40%) is shit as of now, should improve with elmo word embeddings
self.accuracy(torch.round(output_score), labels.type(torch.cuda.FloatTensor))
#output["loss"] = self.loss(torch.cat([op_social,op_agency], dim=1),torch.cat([social.unsqueeze(dim=1).type(torch.FloatTensor),agency.unsqueeze(dim=1).type(torch.FloatTensor)],dim=1))
#Single loss function for two label prediciton
output["loss"] = self.loss(output_score.squeeze(), labels.type(torch.cuda.FloatTensor).squeeze())
return output
def get_metrics(self, reset: bool = False) -> Dict[str, float]:
return {"accuracy": self.accuracy.get_metric(reset) }
class model_evaluator():
def __init__(self, train_df: pd.DataFrame, test_df: pd.DataFrame):
cuda = torch.device('cuda')
#torch.set_default_tensor_type(torch.cuda.FloatTensor)
################################EITHER USE THIS OR THE cl_aff_embedders.py ELMo embedder######################
print("Downloading the options file for ELMo...")
options_file = "https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x4096_512_2048cnn_2xhighway/elmo_2x4096_512_2048cnn_2xhighway_options.json"
print("Downloading the weight file for ELMo...")
weight_file = "https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x4096_512_2048cnn_2xhighway/elmo_2x4096_512_2048cnn_2xhighway_weights.hdf5"
print("Done.")
elmo = nn.DataParallel(Elmo(options_file, weight_file, 1, dropout=0))
##############################################################################################################
elmo.cuda()
#this is all to handle reading in the dataset and prepping the vocab for use. This will probably change slightly
#with the ELMo embeddings.
self.reader = CLAFFDatasetReaderELMofromDataFrame()
train_dataset = self.reader.read(train_df)
validation_dataset = self.reader.read(test_df)
self.vd = validation_dataset
vocab = Vocabulary.from_instances(train_dataset + validation_dataset)
#word_embeddings = BasicTextFieldEmbedder({"character_ids": elmo})
word_embeddings = ELMoTextFieldEmbedder({"character_ids": elmo})
#initialize the model layers that we will want to change.
#lstm = PytorchSeq2VecWrapper(torch.nn.LSTM(EMBEDDING_DIM, HIDDEN_DIM, batch_first=True))
################## for dilated convolutions we will be replacing lstm with our custom layer ##################
self.model= BigramDilatedConvModel(word_embeddings, vocab)
self.model.cuda()
#Set the optimizaer function here
optimizer = optim.Adam(self.model.parameters(), lr=0.5)
#optimizer = optim.Adam(model.parameters(), l r=0.0001)
move_optimizer_to_cuda(optimizer)
# nice iterator functions are pretty much the only reason to stick with AllenNLP rn
iterator = BucketIterator(batch_size=50, sorting_keys=[("sentence", "num_tokens")])
iterator.index_with(vocab)
self.trainer = Trainer(model=self.model,
optimizer=optimizer,
iterator=iterator,
train_dataset=train_dataset,
validation_dataset=validation_dataset,
patience=1,
num_epochs=500)
self.iterator = iterator
#self.predictor = SentenceSeq2VecPredictor(self.model, dataset_reader=self.reader)
self.trained = False
def train(self):
self.trainer.train()
self.predictor = SentenceSeq2VecPredictor(self.model, dataset_reader=self.reader)
self.trained = True
outputs = []
labels = []
self.model.set_evalmode(True)
print("evaluating")
for instance in self.vd:
self.model.forward_on_instance(instance)
outputs.append(self.model.os.cpu().data.numpy())
tensdc = instance.as_tensor_dict()
labels.append([tensdc['agency'].cpu().data.numpy(), tensdc['social'].cpu().data.numpy()])
outputs =np.vstack(outputs)
labels = np.vstack(labels)
#self.predictor = SentenceSeq2VecPredictor(self.model, dataset_reader=self.reader)
return [outputs, labels]
#get F1
#get AUC
def save_model(self):
raise NotImplementedError
def clean_str(self,string):
string = re.sub(r"\. \. \.", "\.", string)
string = re.sub(r"[^A-Za-z0-9(),!?\'\`\.]", " ", string)
# string = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", string)
string = re.sub(r"\'s", " \'s", string)
string = re.sub(r"\'ve", " \'ve", string)
string = re.sub(r"n\'t", " n\'t", string)
string = re.sub(r"\'re", " \'re", string)
string = re.sub(r"\'d", " \'d", string)
string = re.sub(r"\'ll", " \'ll", string)
string = re.sub(r",", " , ", string)
string = re.sub(r"!", " ! ", string)
string = re.sub(r"\(", " ( ", string)
string = re.sub(r"\)", " ) ", string)
string = re.sub(r"\?", " ? ", string)
string = re.sub(r"\s{2,}", " ", string)
return string.strip().lower()
def predict(self, index):
test = []
hmid = []
self.predictor = SentenceSeq2VecPredictor(self.model, dataset_reader=self.reader)
with open('csv/test_17k.csv',encoding="utf8", errors='ignore') as csvfile:
readCSV = csv.reader(csvfile, delimiter=',')
header = next(readCSV)
for row in readCSV:
hmid.append(row[0])
test.append(row[1])
for i in range(len(test)):
test[i] = self.clean_str(test[i])
social_score = []
agency_score = []
social_tag = []
agency_tag = []
print(test)
#print(self.predictor.predict)
#Assign yes/no label based on the prediction
for i in range(len(test)):
print("Processing test datapoint {}...".format(test[i]))
print("Number:", i)
print(self.predictor.predict(test[i]))
#social_score.append(predictor.predict(test[i])['score'][0])
#agency_score.append(predictor.predict(test[i])['score'][1])
if self.predictor.predict(test[i])['score'][0] < 0.5:
social_tag.append("Yes")
else:
social_tag.append("No")
if self.predictor.predict(test[i])['score'][1] < 0.5:
agency_tag.append("Yes")
else:
agency_tag.append("No")
#Make a dict for output
d = {'hmid':hmid, 'Sentence':test,'Social':social_tag, 'Agency':agency_tag}
df = pd.DataFrame(d)
print(df)
#Save the sentence, social prediction, agency prediction on the test set in a csv file
df.to_csv("test_results_"+index+".csv",sep=',', index=False)
def batch_predict(self):
raise NotImplementedError