-
Notifications
You must be signed in to change notification settings - Fork 385
/
Copy pathcrime_qa.py
139 lines (124 loc) · 4.71 KB
/
crime_qa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#!/usr/bin/env python3
# coding: utf-8
# File: crime_qa_server.py
# Author: lhy<[email protected],https://huangyong.github.io>
# Date: 18-11-10
import os
import time
import json
from elasticsearch import Elasticsearch
import numpy as np
import jieba.posseg as pseg
class CrimeQA:
def __init__(self):
self._index = "crime_data"
self.es = Elasticsearch([{"host": "127.0.0.1", "port": 9200}])
self.doc_type = "crime"
cur = '/'.join(os.path.abspath(__file__).split('/')[:-1])
self.embedding_path = os.path.join(cur, 'embedding/word_vec_300.bin')
self.embdding_dict = self.load_embedding(self.embedding_path)
self.embedding_size = 300
self.min_score = 0.4
self.min_sim = 0.8
'''根据question进行事件的匹配查询'''
def search_specific(self, value, key="question"):
query_body = {
"query": {
"match": {
key: value,
}
}
}
searched = self.es.search(index=self._index, doc_type=self.doc_type, body=query_body, size=20)
# 输出查询到的结果
return searched["hits"]["hits"]
'''基于ES的问题查询'''
def search_es(self, question):
answers = []
res = self.search_specific(question)
for hit in res:
answer_dict = {}
answer_dict['score'] = hit['_score']
answer_dict['sim_question'] = hit['_source']['question']
answer_dict['answers'] = hit['_source']['answers'].split('\n')
answers.append(answer_dict)
return answers
'''加载词向量'''
def load_embedding(self, embedding_path):
embedding_dict = {}
count = 0
for line in open(embedding_path):
line = line.strip().split(' ')
if len(line) < 300:
continue
wd = line[0]
vector = np.array([float(i) for i in line[1:]])
embedding_dict[wd] = vector
count += 1
if count%10000 == 0:
print(count, 'loaded')
print('loaded %s word embedding, finished'%count, )
return embedding_dict
'''对文本进行分词处理'''
def seg_sent(self, s):
wds = [i.word for i in pseg.cut(s) if i.flag[0] not in ['x', 'u', 'c', 'p', 'm', 't']]
return wds
'''基于wordvector,通过lookup table的方式找到句子的wordvector的表示'''
def rep_sentencevector(self, sentence, flag='seg'):
if flag == 'seg':
word_list = [i for i in sentence.split(' ') if i]
else:
word_list = self.seg_sent(sentence)
embedding = np.zeros(self.embedding_size)
sent_len = 0
for index, wd in enumerate(word_list):
if wd in self.embdding_dict:
embedding += self.embdding_dict.get(wd)
sent_len += 1
else:
continue
return embedding/sent_len
'''计算问句与库中问句的相似度,对候选结果加以二次筛选'''
def similarity_cosine(self, vector1, vector2):
cos1 = np.sum(vector1*vector2)
cos21 = np.sqrt(sum(vector1**2))
cos22 = np.sqrt(sum(vector2**2))
similarity = cos1/float(cos21*cos22)
if similarity == 'nan':
return 0
else:
return similarity
'''问答主函数'''
def search_main(self, question):
candi_answers = self.search_es(question)
question_vector = self.rep_sentencevector(question,flag='noseg')
answer_dict = {}
for indx, candi in enumerate(candi_answers):
candi_question = candi['sim_question']
score = candi['score']/100
candi_vector = self.rep_sentencevector(candi_question, flag='noseg')
sim = self.similarity_cosine(question_vector, candi_vector)
if sim < self.min_sim:
continue
final_score = (score + sim)/2
if final_score < self.min_score:
continue
answer_dict[indx] = final_score
if answer_dict:
answer_dict = sorted(answer_dict.items(), key=lambda asd:asd[1], reverse=True)
final_answer = candi_answers[answer_dict[0][0]]['answers']
else:
final_answer = '您好,对于此类问题,您可以咨询公安部门'
#
# for i in answer_dict:
# answer_indx = i[0]
# score = i[1]
# print(i, score, candi_answers[answer_indx])
# print('******'*6)
return final_answer
if __name__ == "__main__":
handler = CrimeQA()
while(1):
question = input('question:')
final_answer = handler.search_main(question)
print('answers:', final_answer)