-
Notifications
You must be signed in to change notification settings - Fork 304
/
Copy pathutils.py
234 lines (185 loc) · 8.69 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# -*- coding:utf-8 -*-
# @project: ChatGPT
# @filename: utils
# @author: 刘聪NLP
# @zhihu: https://www.zhihu.com/people/LiuCongNLP
# @contact: [email protected]
# @time: 2023/8/6 16:13
"""
文件说明:
"""
import torch
import random
import numpy as np
from transformers import set_seed
import json
import os
from torch.utils.data import Dataset
class GLMPromptDataSet(Dataset):
def __init__(self, data_path, tokenizer, max_len, max_src_len, is_skip):
self.all_data = []
skip_data_number = 0
with open(data_path, "r", encoding="utf-8") as fh:
for i, line in enumerate(fh):
sample = json.loads(line.strip())
skip_flag = False
src_tokens = tokenizer.tokenize(
"[Round {}]\n问:{}\n答:".format(1, sample["instruction"] + sample["input"]))
if len(src_tokens) > max_src_len:
# 当输入内容超长时,随向后截断,但保留“\n答:”内容
src_tokens = src_tokens[:max_src_len - 3] + src_tokens[-3:]
skip_flag = True
max_tgt_len = max_len - 3 - len(src_tokens)
tgt_tokens = tokenizer.tokenize(sample["output"])
if len(tgt_tokens) > max_tgt_len:
tgt_tokens = tgt_tokens[:max_tgt_len]
skip_flag = True
# ChatGLM需要在输入内容后面增加"[gMASK]"、"<sop>"标记
tokens = src_tokens + ["[gMASK]", "<sop>"] + tgt_tokens + ["<eop>"]
input_ids = tokenizer.convert_tokens_to_ids(tokens)
context_length = input_ids.index(tokenizer.bos_token_id)
mask_position = context_length - 1
labels = [-100] * context_length + input_ids[mask_position + 1:]
assert len(input_ids) == len(labels)
assert len(input_ids) <= max_len
if is_skip and skip_flag:
skip_data_number += 1
continue
self.all_data.append({"input_ids": input_ids, "labels": labels})
print("the number of skipping data is {}".format(skip_data_number))
def __len__(self):
return len(self.all_data)
def __getitem__(self, item):
instance = self.all_data[item]
return instance
class GLM2PromptDataSet(Dataset):
def __init__(self, data_path, tokenizer, max_len, max_src_len, is_skip):
self.all_data = []
skip_data_number = 0
with open(data_path, "r", encoding="utf-8") as fh:
for i, line in enumerate(fh):
sample = json.loads(line.strip())
skip_flag = False
src_tokens = tokenizer.tokenize(
"[Round {}]\n\n问:{}\n\n答:".format(1, sample["instruction"] + sample["input"]))
if len(src_tokens) > max_src_len:
# 当输入内容超长时,随向后截断,但保留“\n\n答:”内容
src_tokens = src_tokens[:max_src_len - 4] + src_tokens[-4:]
skip_flag = True
max_tgt_len = max_len - 3 - len(src_tokens)
tgt_tokens = tokenizer.tokenize(sample["output"])
if len(tgt_tokens) > max_tgt_len:
tgt_tokens = tgt_tokens[:max_tgt_len]
skip_flag = True
tokens = src_tokens + tgt_tokens + ["</s>"]
assert len(tokens) <= max_len
# ChatGLM2需要增加[gMASK]、sop两个标记
input_ids = [tokenizer.get_command("[gMASK]"),
tokenizer.get_command("sop")] + tokenizer.convert_tokens_to_ids(tokens)
context_length = len(src_tokens) + 2
labels = [-100] * context_length + input_ids[context_length:]
assert len(input_ids) == len(labels)
assert len(input_ids) <= max_len
if is_skip and skip_flag:
skip_data_number += 1
continue
self.all_data.append({"input_ids": input_ids, "labels": labels})
print("the number of skipping data is {}".format(skip_data_number))
def __len__(self):
return len(self.all_data)
def __getitem__(self, item):
instance = self.all_data[item]
return instance
class GLM3PromptDataSet(Dataset):
def __init__(self, data_path, tokenizer, max_len, max_src_len, is_skip):
self.all_data = []
skip_data_number = 0
with open(data_path, "r", encoding="utf-8") as fh:
for i, line in enumerate(fh):
sample = json.loads(line.strip())
skip_flag = False
src_tokens = [tokenizer.get_command("<|user|>")] + tokenizer.encode("\n", add_special_tokens=False) + \
tokenizer.encode(sample["instruction"] + sample["input"], add_special_tokens=False)
if len(src_tokens) > max_src_len:
# 当输入内容超长时,随向后截断
src_tokens = src_tokens[:max_src_len]
skip_flag = True
max_tgt_len = max_len - 6 - len(src_tokens)
tgt_tokens = [tokenizer.get_command("<|assistant|>")] + tokenizer.encode("\n", add_special_tokens=False) + \
tokenizer.encode(sample["output"], add_special_tokens=False)
if len(tgt_tokens) > max_tgt_len:
# 当输出内容超长时,随向后截断
tgt_tokens = tgt_tokens[:max_tgt_len]
skip_flag = True
# ChatGLM3需要增加[gMASK]、sop两个标记
input_ids = [tokenizer.get_command("[gMASK]"),
tokenizer.get_command("sop")] + src_tokens + tgt_tokens + [tokenizer.eos_token_id]
context_length = len(src_tokens) + 2
labels = [-100] * context_length + input_ids[context_length:]
assert len(input_ids) == len(labels)
assert len(input_ids) <= max_len
if is_skip and skip_flag:
skip_data_number += 1
continue
self.all_data.append({"input_ids": input_ids, "labels": labels})
print("the number of skipping data is {}".format(skip_data_number))
def __len__(self):
return len(self.all_data)
def __getitem__(self, item):
instance = self.all_data[item]
return instance
class DataCollator(object):
def __init__(self, tokenizer):
self.tokenizer = tokenizer
self.pad_token_id = tokenizer.pad_token_id
def __call__(self, batch):
lengths = [len(instance["input_ids"]) for instance in batch]
batch_max_len = max(lengths)
input_ids_batch, labels_batch = [], []
for instance in batch:
input_ids = instance["input_ids"]
labels = instance["labels"]
padding_len = batch_max_len - len(input_ids)
input_ids = input_ids + [self.pad_token_id] * padding_len
labels = labels + [-100] * padding_len
input_ids_batch.append(input_ids)
labels_batch.append(labels)
return {"input_ids": torch.tensor(input_ids_batch, dtype=torch.long),
"labels": torch.tensor(labels_batch, dtype=torch.long)}
def print_trainable_parameters(model):
trainable_params = 0
all_param = 0
for _, param in model.named_parameters():
num_params = param.numel()
if num_params == 0 and hasattr(param, "ds_numel"):
num_params = param.ds_numel
all_param += num_params
if param.requires_grad:
trainable_params += num_params
print("trainable params: {} || all params: {} || trainable%: {}".format(trainable_params, all_param,
100 * trainable_params / all_param))
def print_rank_0(msg, rank=0):
if rank <= 0:
print(msg)
def to_device(batch, device):
output = {}
for k, v in batch.items():
try:
output[k] = v.to(device)
except:
output[k] = v
return output
def set_random_seed(seed):
if seed is not None:
set_seed(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def save_model(model, tokenizer, output_dir, model_name, state_dict=None):
save_dir = os.path.join(output_dir, model_name)
if state_dict == None:
model.save_pretrained(save_dir, torch_dtype=torch.float16)
else:
model.save_pretrained(save_dir, state_dict=state_dict, torch_dtype=torch.float16)
tokenizer.save_pretrained(save_dir)