forked from robcarver17/pysystemtrade
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadjusted_prices.py
192 lines (143 loc) · 6.05 KB
/
adjusted_prices.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
from copy import copy
import numpy as np
import pandas as pd
from syscore.pandas.full_merge_with_replacement import full_merge_of_existing_series
from sysobjects.dict_of_named_futures_per_contract_prices import (
price_name,
contract_name_from_column_name,
)
from sysobjects.multiple_prices import futuresMultiplePrices
class futuresAdjustedPrices(pd.Series):
"""
adjusted price information
"""
def __init__(self, price_data):
price_data.index.name = "index" # arctic compatible
super().__init__(price_data)
@classmethod
def create_empty(futuresContractPrices):
"""
Our graceful fail is to return an empty, but valid, dataframe
"""
futures_contract_prices = futuresContractPrices(pd.Series(dtype="float64"))
return futures_contract_prices
@classmethod
def stitch_multiple_prices(
futuresAdjustedPrices,
multiple_prices: futuresMultiplePrices,
forward_fill: bool = False,
):
"""
Do backstitching of multiple prices using panama method
If you want to change then override this method
:param multiple_prices: multiple prices object
:param forward_fill: forward fill prices and forwards before stitching
:return: futuresAdjustedPrices
"""
adjusted_prices = _panama_stitch(multiple_prices, forward_fill)
return futuresAdjustedPrices(adjusted_prices)
def update_with_multiple_prices_no_roll(
self, updated_multiple_prices: futuresMultiplePrices
):
"""
Update adjusted prices assuming no roll has happened
:param updated_multiple_prices: futuresMultiplePrices
:return: updated adjusted prices
"""
updated_adj = _update_adjusted_prices_from_multiple_no_roll(
self, updated_multiple_prices
)
return updated_adj
def _panama_stitch(
multiple_prices_input: futuresMultiplePrices, forward_fill: bool = False
) -> pd.Series:
"""
Do a panama stitch for adjusted prices
:param multiple_prices: futuresMultiplePrices
:return: pd.Series of adjusted prices
"""
multiple_prices = copy(multiple_prices_input)
if forward_fill:
multiple_prices.ffill(inplace=True)
if multiple_prices.empty:
raise Exception("Can't stitch an empty multiple prices object")
previous_row = multiple_prices.iloc[0, :]
adjusted_prices_values = [previous_row.PRICE]
for dateindex in multiple_prices.index[1:]:
current_row = multiple_prices.loc[dateindex, :]
if current_row.PRICE_CONTRACT == previous_row.PRICE_CONTRACT:
# no roll has occured
# we just append the price
adjusted_prices_values.append(current_row.PRICE)
else:
# A roll has occured
adjusted_prices_values = _roll_in_panama(
adjusted_prices_values, previous_row, current_row
)
previous_row = current_row
# it's ok to return a DataFrame since the calling object will change the
# type
adjusted_prices = pd.Series(adjusted_prices_values, index=multiple_prices.index)
return adjusted_prices
def _roll_in_panama(adjusted_prices_values, previous_row, current_row):
# This is the sort of code you will need to change to adjust the roll logic
# The roll differential is from the previous_row
roll_differential = previous_row.FORWARD - previous_row.PRICE
if np.isnan(roll_differential):
raise Exception(
"On this day %s which should be a roll date we don't have prices for both %s and %s contracts"
% (
str(current_row.name),
previous_row.PRICE_CONTRACT,
previous_row.FORWARD_CONTRACT,
)
)
# We add the roll differential to all previous prices
adjusted_prices_values = [
adj_price + roll_differential for adj_price in adjusted_prices_values
]
# note this includes the price for the previous row, which will now be equal to the forward price
# We now add todays price. This will be for the new contract
adjusted_prices_values.append(current_row.PRICE)
return adjusted_prices_values
no_update_roll_has_occured = futuresAdjustedPrices.create_empty()
def _update_adjusted_prices_from_multiple_no_roll(
existing_adjusted_prices: futuresAdjustedPrices,
updated_multiple_prices: futuresMultiplePrices,
) -> futuresAdjustedPrices:
"""
Update adjusted prices assuming no roll has happened
:param existing_adjusted_prices: futuresAdjustedPrices
:param updated_multiple_prices: futuresMultiplePrices
:return: updated adjusted prices
"""
new_multiple_price_data, last_contract_in_price_data = _calc_new_multiple_prices(
existing_adjusted_prices, updated_multiple_prices
)
no_roll_has_occured = new_multiple_price_data.check_all_contracts_equal_to(
last_contract_in_price_data
)
if not no_roll_has_occured:
return no_update_roll_has_occured
new_adjusted_prices = new_multiple_price_data[price_name]
new_adjusted_prices = new_adjusted_prices.dropna()
merged_adjusted_prices = full_merge_of_existing_series(
existing_adjusted_prices, new_adjusted_prices
)
merged_adjusted_prices = futuresAdjustedPrices(merged_adjusted_prices)
return merged_adjusted_prices
def _calc_new_multiple_prices(
existing_adjusted_prices: futuresAdjustedPrices,
updated_multiple_prices: futuresMultiplePrices,
) -> (futuresMultiplePrices, str):
last_date_in_current_adj = existing_adjusted_prices.index[-1]
multiple_prices_as_dict = updated_multiple_prices.as_dict()
prices_in_multiple_prices = multiple_prices_as_dict[price_name]
price_contract_column = contract_name_from_column_name(price_name)
last_contract_in_price_data = prices_in_multiple_prices[price_contract_column][
:last_date_in_current_adj
][-1]
new_multiple_price_data = prices_in_multiple_prices.prices_after_date(
last_date_in_current_adj
)
return new_multiple_price_data, last_contract_in_price_data