-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathinfer_all.py
executable file
·427 lines (373 loc) · 16.7 KB
/
infer_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
import csv
import sys
import logging
import time
import argparse
import os
import pickle
import numpy as np
import rdkit
import random
import multiprocessing
import torch
import torch.nn as nn
import pandas as pd
from rdchiral.main import rdchiralReaction, rdchiralReactants, rdchiralRun
from torch.utils.data import DataLoader
from datetime import datetime
from pathlib import Path
from typing import Dict, List, Optional, Tuple, Union
from collections import defaultdict, Counter
from functools import partial
from scipy import sparse
from tqdm import tqdm
from rdkit import RDLogger
from rdkit import Chem
from rdkit.Chem import AllChem
from model import TemplateNN_Highway, TemplateNN_FC
from dataset import FingerprintDataset
DATA_FOLDER = Path(__file__).resolve().parent / 'data'
CHECKPOINT_FOLDER = Path(__file__).resolve().parent / 'checkpoint'
def infer_all(args):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
logging.info(f'Loading templates from file: {args.templates_file}')
with open(DATA_FOLDER / args.templates_file, 'r') as f:
templates = f.readlines()
templates_filtered = []
for p in templates:
pa, cnt = p.strip().split(': ')
if int(cnt) >= args.min_freq:
templates_filtered.append(pa)
logging.info(f'Total number of template patterns: {len(templates_filtered)}')
# load model from checkpoint
checkpoint = torch.load(
CHECKPOINT_FOLDER / f"{args.expt_name}.pth.tar",
map_location=device,
)
if args.model == 'Highway':
model = TemplateNN_Highway(
output_size=len(templates_filtered),
size=args.hidden_size,
num_layers_body=args.depth,
input_size=args.fp_size
)
elif args.model == 'FC':
model = TemplateNN_FC(
output_size=len(templates_filtered),
size=args.hidden_size,
input_size=args.fp_size
)
else:
raise ValueError('Unrecognized model name')
model.load_state_dict(checkpoint["state_dict"])
model.to(device)
for phase in args.phases:
dataset = FingerprintDataset(
args.prodfps_prefix+f'_{phase}.npz',
args.labels_prefix+f'_{phase}.npy'
)
loader = DataLoader(dataset, batch_size=args.bs, shuffle=False)
del dataset
preds = []
loader = tqdm(loader, desc=f'Inferring on {phase}')
model.eval()
with torch.no_grad():
for data in loader:
inputs, labels, idxs = data # we don't need labels & idxs
inputs = inputs.to(device)
outputs = model(inputs)
outputs = nn.Softmax(dim=1)(outputs)
preds.append(torch.topk(outputs, k=args.topk, dim=1)[1])
preds = torch.cat(preds, dim=0).squeeze(dim=-1).cpu().numpy()
logging.info(f'preds.shape: {preds.shape}')
np.save(
DATA_FOLDER / f"neuralsym_{args.topk}topk_{args.maxk}maxk_preds_{args.seed}_{phase}",
preds
)
logging.info(f'Saved preds of {phase} as npy!')
def gen_precs(templates_filtered, preds, phase_topk, task):
i, prod_smi_nomap = task
# generate predictions from templates
precursors, dup_count = [], 0
pred_temp_idxs = preds[i]
for idx in pred_temp_idxs:
template = templates_filtered[idx]
try:
"""rdchiral version"""
# rxn = rdchiralReaction(template)
# prod = rdchiralReactants(prod_smi_nomap)
# precs = rdchiralRun(rxn, prod)
# precursors.extend(precs)
"""rdkit version"""
rxn = AllChem.ReactionFromSmarts(template)
prod = [Chem.MolFromSmiles(prod_smi_nomap)]
precs = rxn.RunReactants(prod)
precs = list(set([".".join([Chem.MolToSmiles(p) for p in prec]) for prec in precs]))
# canonicalize all predictions
precs = list(Chem.CanonSmiles(prec) for prec in precs)
precursors.extend(precs)
except:
continue
# remove duplicate predictions
seen = []
for prec in precursors:
# canonicalize all predictions
# prec = Chem.MolToSmiles(Chem.MolFromSmiles(prec), True)
if prec not in seen:
seen.append(prec)
else:
dup_count += 1
if len(seen) < phase_topk:
seen.extend(['9999'] * (phase_topk - len(seen)))
else:
seen = seen[:phase_topk]
return precursors, seen, dup_count
def compile_into_csv(args):
logging.info(f'Loading templates from file: {args.templates_file}')
with open(DATA_FOLDER / args.templates_file, 'r') as f:
templates = f.readlines()
templates_filtered = []
for p in templates:
pa, cnt = p.strip().split(': ')
if int(cnt) >= args.min_freq:
templates_filtered.append(pa)
logging.info(f'Total number of template patterns: {len(templates_filtered)}')
for phase in args.phases:
# load predictions npy files
preds = np.load(DATA_FOLDER / f"neuralsym_{args.topk}topk_{args.maxk}maxk_preds_{args.seed}_{phase}.npy")
# load mapped_rxn_smi
with open(DATA_FOLDER / f'{args.rxn_smi_prefix}_{phase}.pickle', 'rb') as f:
clean_rxnsmi_phase = pickle.load(f)
proposals_data = pd.read_csv(
DATA_FOLDER / f"{args.csv_prefix}_{phase}.csv",
index_col=None, dtype='str'
)
tasks = []
for i in range(len(clean_rxnsmi_phase)): # build tasks
tasks.append((i, proposals_data.iloc[i, 1]))
proposals_phase = {}
proposed_precs_phase, prod_smiles_phase, rcts_smiles_phase = [], [], []
proposed_precs_phase_withdups = [] # true representation of model predictions, for calc_accs()
prod_smiles_mapped_phase = [] # helper for analyse_proposed()
phase_topk = args.topk if phase == 'train' else args.maxk
dup_count = 0
num_cores = len(os.sched_getaffinity(0))
logging.info(f'Parallelizing over {num_cores} cores')
pool = multiprocessing.Pool(num_cores)
gen_precs_partial = partial(gen_precs, templates_filtered, preds, phase_topk)
for i, result in enumerate(tqdm(pool.imap(gen_precs_partial, tasks),
total=len(clean_rxnsmi_phase), desc='Generating predicted reactants')):
precursors, seen, this_dup = result
dup_count += this_dup
prod_smi = clean_rxnsmi_phase[i].split('>>')[-1]
prod_smiles_mapped_phase.append(prod_smi)
prod_smi_nomap = proposals_data.iloc[i, 1]
prod_smiles_phase.append(prod_smi_nomap)
rcts_smi_nomap = proposals_data.iloc[i, 2]
rcts_smiles_phase.append(rcts_smi_nomap)
proposals_phase[prod_smi] = precursors
proposed_precs_phase.append(seen)
proposed_precs_phase_withdups.append(precursors)
with open(DATA_FOLDER / f'precs_{args.seed}_{phase}.pickle', 'wb') as f:
pickle.dump(proposed_precs_phase_withdups, f)
with open(DATA_FOLDER / f'seen_{args.seed}_{phase}.pickle', 'wb') as f:
pickle.dump(proposed_precs_phase, f)
dup_count /= len(clean_rxnsmi_phase)
logging.info(f'Avg # dups per product: {dup_count}')
# match predictions to true_precursors & get rank
logging.info('\nCalculating ranks before removing duplicates')
_ = calc_accs(
[phase],
clean_rxnsmi_phase,
rcts_smiles_phase,
proposed_precs_phase_withdups,
) # just to calculate accuracy
logging.info('\nCalculating ranks after removing duplicates')
ranks_dict = calc_accs(
[phase],
clean_rxnsmi_phase,
rcts_smiles_phase,
proposed_precs_phase
)
ranks_phase = ranks_dict[phase]
if phase == 'train':
logging.info('\n(For training only) Double checking accuracy after removing ground truth predictions')
_ = calc_accs(
[phase],
clean_rxnsmi_phase,
rcts_smiles_phase,
proposed_precs_phase
)
analyse_proposed(
prod_smiles_phase,
prod_smiles_mapped_phase,
proposals_phase, # this func needs this to be a dict {mapped_prod_smi: proposals}
)
combined = {}
zipped = []
for rxn_smi, prod_smi, rcts_smi, rank_of_true_precursor, proposed_rcts_smi in zip(
clean_rxnsmi_phase,
prod_smiles_phase,
rcts_smiles_phase,
ranks_phase,
proposed_precs_phase,
):
result = []
result.extend([rxn_smi, prod_smi, rcts_smi, rank_of_true_precursor])
result.extend(proposed_rcts_smi)
zipped.append(result)
combined[phase] = zipped
logging.info('Zipped all info for each rxn_smi into a list for dataframe creation!')
temp_dataframe = pd.DataFrame(
data={'zipped': combined[phase]}
)
phase_dataframe = pd.DataFrame(
temp_dataframe['zipped'].to_list(),
index=temp_dataframe.index
)
if phase == 'train': # true precursor has been removed from the proposals, so whatever is left are negatives
proposed_col_names = [f'neg_precursor_{i}' for i in range(1, args.topk + 1)]
else: # validation/testing, we don't assume true precursor is present & we also do not remove them if present
proposed_col_names = [f'cand_precursor_{i}' for i in range(1, args.maxk + 1)]
col_names = ['orig_rxn_smi', 'prod_smi', 'true_precursors', 'rank_of_true_precursor']
col_names.extend(proposed_col_names)
phase_dataframe.columns = col_names
phase_dataframe.to_csv(
DATA_FOLDER /
f'neuralsym_{args.topk}topk_{args.maxk}maxk_noGT_{args.seed}_{phase}.csv',
index=False
)
logging.info(f'Saved proposals of {phase} as CSV!')
def calc_accs(
phases : List[str],
clean_rxnsmi_phase : List[str],
rcts_smiles_phase : List[str],
proposed_precs_phase : List[str],
) -> Dict[str, List[int]]:
ranks = {}
for phase in phases:
phase_ranks = []
if phase == 'train':
for idx in tqdm(range(len(clean_rxnsmi_phase))):
true_precursors = rcts_smiles_phase[idx]
all_proposed_precursors = proposed_precs_phase[idx]
found = False
for rank, proposal in enumerate(all_proposed_precursors): # ranks are 0-indexed
if true_precursors == proposal:
phase_ranks.append(rank)
# remove true precursor from proposals
all_proposed_precursors.pop(rank)
all_proposed_precursors.append('9999')
found = True
break
if not found:
phase_ranks.append(9999)
else:
for idx in tqdm(range(len(clean_rxnsmi_phase))):
true_precursors = rcts_smiles_phase[idx]
all_proposed_precursors = proposed_precs_phase[idx]
found = False
for rank, proposal in enumerate(all_proposed_precursors): # ranks are 0-indexed
if true_precursors == proposal:
phase_ranks.append(rank)
# do not pop true precursor from proposals!
found = True
break
if not found:
phase_ranks.append(9999)
ranks[phase] = phase_ranks
logging.info('\n')
for n in [1, 3, 5, 10, 20, 50, 100, 200]:
total = float(len(ranks[phase]))
acc = sum([r+1 <= n for r in ranks[phase]]) / total
logging.info(f'{phase.title()} Top-{n} accuracy: {acc * 100 : .3f}%')
logging.info('\n')
return ranks # dictionary
def analyse_proposed(
prod_smiles_phase : List[str],
prod_smiles_mapped_phase : List[str],
proposals_phase : Dict[str, List[str]],
):
proposed_counter = Counter()
total_proposed, min_proposed, max_proposed = 0, float('+inf'), float('-inf')
key_count = 0
for key, mapped_key in zip(prod_smiles_phase, prod_smiles_mapped_phase):
precursors = proposals_phase[mapped_key]
precursors_count = len(precursors)
total_proposed += precursors_count
if precursors_count > max_proposed:
max_proposed = precursors_count
prod_smi_max = key
if precursors_count < min_proposed:
min_proposed = precursors_count
prod_smi_min = key
proposed_counter[key] = precursors_count
key_count += 1
logging.info(f'Average precursors proposed per prod_smi (dups removed): {total_proposed / key_count}')
logging.info(f'Min precursors: {min_proposed} for {prod_smi_min}')
logging.info(f'Max precursors: {max_proposed} for {prod_smi_max})')
logging.info(f'\nMost common 20:')
for i in proposed_counter.most_common(20):
logging.info(f'{i}')
logging.info(f'\nLeast common 20:')
for i in proposed_counter.most_common()[-20:]:
logging.info(f'{i}')
return
def parse_args():
parser = argparse.ArgumentParser("inference.py")
# file names
parser.add_argument("--log_file", help="log_file", type=str, default="inference")
parser.add_argument("--expt_name", help="name of expt to load model from", type=str)
parser.add_argument("--rxn_smi_prefix", help="rxn_smi file",
type=str, default="50k_clean_rxnsmi_noreagent_allmapped_canon")
parser.add_argument("--templates_file", help="templates_file",
type=str, default="50k_training_templates")
parser.add_argument("--prodfps_prefix",
help="npz file of product fingerprints",
type=str)
parser.add_argument("--labels_prefix",
help="npy file of labels",
type=str)
parser.add_argument("--csv_prefix",
help="csv file of various metadata about the rxn",
type=str)
# metadata
parser.add_argument("--seed", help="Seed used for model training", type=int, default=1337)
parser.add_argument("--model", help="['Highway', 'FC']", type=str, default='Highway')
parser.add_argument("--phases", help="Phases to do inference on", type=str,
default=['train', 'valid', 'test'], nargs='+')
parser.add_argument("--min_freq", help="Min freq of template", type=int, default=1)
parser.add_argument("--radius", help="Fingerprint radius", type=int, default=2)
parser.add_argument("--fp_size", help="Fingerprint size", type=int, default=32681)
parser.add_argument("--bs", help="batch size", type=int, default=500)
parser.add_argument("--topk", help="How many top-k proposals to put in train (not guaranteed)",
type=int, default=200)
parser.add_argument("--maxk", help="How many top-k proposals to generate and put in valid/test (not guaranteed)",
type=int, default=200)
# model params
parser.add_argument("--hidden_size", help="hidden size", type=int, default=300)
parser.add_argument("--depth", help="depth", type=int, default=0)
return parser.parse_args()
if __name__ == '__main__':
args = parse_args()
RDLogger.DisableLog("rdApp.warning")
os.makedirs("./logs", exist_ok=True)
dt = datetime.strftime(datetime.now(), "%y%m%d-%H%Mh")
logger = logging.getLogger()
logger.setLevel(logging.INFO)
fh = logging.FileHandler(f"./logs/{args.log_file}.{dt}")
fh.setLevel(logging.INFO)
sh = logging.StreamHandler(sys.stdout)
sh.setLevel(logging.INFO)
logger.addHandler(fh)
logger.addHandler(sh)
if args.labels_prefix is None:
args.labels_prefix = f'50k_1000000dim_{args.radius}rad_to_{args.fp_size}_labels'
if args.prodfps_prefix is None:
args.prodfps_prefix = f'50k_1000000dim_{args.radius}rad_to_{args.fp_size}_prod_fps'
if args.csv_prefix is None:
args.csv_prefix = f'50k_1000000dim_{args.radius}rad_to_{args.fp_size}_csv'
logging.info(f'{args}')
if not (DATA_FOLDER / f"neuralsym_{args.topk}topk_{args.maxk}maxk_preds_train.npy").exists():
infer_all(args) # <10 sec to infer on train + valid + test on 1x RTX2080
compile_into_csv(args) # this is slow, needs ~1.5h on 8 cores (parallelized)