-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathdocument_bert_architectures.py
82 lines (71 loc) · 4.47 KB
/
document_bert_architectures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import torch
from torch import nn
from torch.nn import LSTM
from transformers import BertPreTrainedModel, BertConfig, BertModel
import torch.nn.functional as F
def init_weights(m):
if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform(m.weight)
m.bias.data.fill_(7)
class DocumentBertSentenceChunkAttentionLSTM(BertPreTrainedModel):
def __init__(self, bert_model_config: BertConfig):
super(DocumentBertSentenceChunkAttentionLSTM, self).__init__(bert_model_config)
self.bert = BertModel(bert_model_config)
self.dropout = nn.Dropout(p=bert_model_config.hidden_dropout_prob)
self.lstm = LSTM(bert_model_config.hidden_size,bert_model_config.hidden_size)
self.mlp = nn.Sequential(
nn.Dropout(p=bert_model_config.hidden_dropout_prob),
nn.Linear(bert_model_config.hidden_size, 1)
)
self.w_omega = nn.Parameter(torch.Tensor(bert_model_config.hidden_size, bert_model_config.hidden_size))
self.b_omega = nn.Parameter(torch.Tensor(1, bert_model_config.hidden_size))
self.u_omega = nn.Parameter(torch.Tensor(bert_model_config.hidden_size, 1))
nn.init.uniform_(self.w_omega, -0.1, 0.1)
nn.init.uniform_(self.u_omega, -0.1, 0.1)
nn.init.uniform_(self.b_omega, -0.1, 0.1)
self.mlp.apply(init_weights)
def forward(self, document_batch: torch.Tensor, device='cpu', bert_batch_size=0):
bert_output = torch.zeros(size=(document_batch.shape[0],
min(document_batch.shape[1],
bert_batch_size),
self.bert.config.hidden_size), dtype=torch.float, device=device)
for doc_id in range(document_batch.shape[0]):
bert_output[doc_id][:bert_batch_size] = self.dropout(self.bert(document_batch[doc_id][:bert_batch_size,0],
token_type_ids=document_batch[doc_id][:bert_batch_size, 1],
attention_mask=document_batch[doc_id][:bert_batch_size, 2])[1])
output, (_, _) = self.lstm(bert_output.permute(1, 0, 2))
output = output.permute(1, 0, 2)
# (batch_size, seq_len, num_hiddens)
attention_w = torch.tanh(torch.matmul(output, self.w_omega) + self.b_omega)
attention_u = torch.matmul(attention_w, self.u_omega) # (batch_size, seq_len, 1)
attention_score = F.softmax(attention_u, dim=1) # (batch_size, seq_len, 1)
attention_hidden = output * attention_score # (batch_size, seq_len, num_hiddens)
attention_hidden = torch.sum(attention_hidden, dim=1) # 加权求和 (batch_size, num_hiddens)
prediction = self.mlp(attention_hidden)
assert prediction.shape[0] == document_batch.shape[0]
return prediction
class DocumentBertCombineWordDocumentLinear(BertPreTrainedModel):
def __init__(self, bert_model_config: BertConfig):
super(DocumentBertCombineWordDocumentLinear, self).__init__(bert_model_config)
self.bert = BertModel(bert_model_config)
self.bert_batch_size = 1
self.dropout = nn.Dropout(p=bert_model_config.hidden_dropout_prob)
self.mlp = nn.Sequential(
nn.Dropout(p=bert_model_config.hidden_dropout_prob),
nn.Linear(bert_model_config.hidden_size * 2, 1)
)
self.mlp.apply(init_weights)
def forward(self, document_batch: torch.Tensor, device='cpu'):
bert_output = torch.zeros(size=(document_batch.shape[0],
min(document_batch.shape[1], self.bert_batch_size),
self.bert.config.hidden_size * 2),
dtype=torch.float, device=device)
for doc_id in range(document_batch.shape[0]):
all_bert_output_info = self.bert(document_batch[doc_id][:self.bert_batch_size,0],
token_type_ids=document_batch[doc_id][:self.bert_batch_size, 1],
attention_mask=document_batch[doc_id][:self.bert_batch_size, 2])
bert_token_max = torch.max(all_bert_output_info[0], 1)
bert_output[doc_id][:self.bert_batch_size] = torch.cat((bert_token_max.values, all_bert_output_info[1]), 1)
prediction = self.mlp(bert_output.view(bert_output.shape[0], -1))
assert prediction.shape[0] == document_batch.shape[0]
return prediction