#Spark例子
译者:卢文泉
校对:无
在下面的例子中,你会学习使用Kubernetes和Docker创建一个能够使用的阿帕奇Spark集群。我们使用Spark的单例模式创建一个Spark master节点服务和一系列Spark workers节点。
对于不耐心的专家,直接跳到这个部分
##资源 Docker镜像很重,基于https://github.com/mattf/docker-spark
##步骤0:预备知识 下面的例子假设你已经安装和运行一个Kubernetes集群,并且你也下载好kubectl命令行工具以及配置在你的path中。请先阅读入门指南获取在你平台上安装Kubernetes的指令。
##步骤一:启动Master服务 Master服务是一个Spark集群的主服务(或头服务)。
使用**examples/spark/spark-master.json**文件创建运行在Master服务中的pod。
$ kubectl create -f examples/spark/spark-master.json
然后使用**examples/spark/spark-master-service.json**文件创建一个逻辑服务端点供Spark workers节点使用连接Matser pod。
$ kubectl create -f examples/spark/spark-master-service.json
###检查Master节点使用运行并且能够连接
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
[...]
spark-master 1/1 Running 0 25s
检查日志查看master节点的状态:
$ kubectl logs spark-master
starting org.apache.spark.deploy.master.Master, logging to /opt/spark-1.4.0-bin-hadoop2.6/sbin/../logs/spark--org.apache.spark.deploy.master.Master-1-spark-master.out
Spark Command: /usr/lib/jvm/java-7-openjdk-amd64/jre/bin/java -cp /opt/spark-1.4.0-bin-hadoop2.6/sbin/../conf/:/opt/spark-1.4.0-bin-hadoop2.6/lib/spark-assembly-1.4.0-hadoop2.6.0.jar:/opt/spark-1.4.0-bin-hadoop2.6/lib/datanucleus-api-jdo-3.2.6.jar:/opt/spark-1.4.0-bin-hadoop2.6/lib/datanucleus-rdbms-3.2.9.jar:/opt/spark-1.4.0-bin-hadoop2.6/lib/datanucleus-core-3.2.10.jar -Xms512m -Xmx512m -XX:MaxPermSize=128m org.apache.spark.deploy.master.Master --ip spark-master --port 7077 --webui-port 8080
========================================
15/06/26 14:01:49 INFO Master: Registered signal handlers for [TERM, HUP, INT]
15/06/26 14:01:50 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
15/06/26 14:01:51 INFO SecurityManager: Changing view acls to: root
15/06/26 14:01:51 INFO SecurityManager: Changing modify acls to: root
15/06/26 14:01:51 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(root); users with modify permissions: Set(root)
15/06/26 14:01:51 INFO Slf4jLogger: Slf4jLogger started
15/06/26 14:01:51 INFO Remoting: Starting remoting
15/06/26 14:01:52 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkMaster@spark-master:7077]
15/06/26 14:01:52 INFO Utils: Successfully started service 'sparkMaster' on port 7077.
15/06/26 14:01:52 INFO Utils: Successfully started service on port 6066.
15/06/26 14:01:52 INFO StandaloneRestServer: Started REST server for submitting applications on port 6066
15/06/26 14:01:52 INFO Master: Starting Spark master at spark://spark-master:7077
15/06/26 14:01:52 INFO Master: Running Spark version 1.4.0
15/06/26 14:01:52 INFO Utils: Successfully started service 'MasterUI' on port 8080.
15/06/26 14:01:52 INFO MasterWebUI: Started MasterWebUI at http://10.244.2.34:8080
15/06/26 14:01:53 INFO Master: I have been elected leader! New state: ALIVE
##步骤二:启动Spark workers 在Spark集群中Spark workers做繁重的工作。它们为你的程序提供计算资源和数据缓存的能力。
Spark workers需要Master服务支持才能运行。
使用**examples/spark/spark-worker-controller.json**文件创建复制控制器管理workers pod。
$ kubectl create -f examples/spark/spark-worker-controller.json
###检查workers节点是否运行
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
[...]
spark-master 1/1 Running 0 14m
spark-worker-controller-hifwi 1/1 Running 0 33s
spark-worker-controller-u40r2 1/1 Running 0 33s
spark-worker-controller-vpgyg 1/1 Running 0 33s
$ kubectl logs spark-master
[...]
15/06/26 14:15:43 INFO Master: Registering worker 10.244.2.35:46199 with 1 cores, 2.6 GB RAM
15/06/26 14:15:55 INFO Master: Registering worker 10.244.1.15:44839 with 1 cores, 2.6 GB RAM
15/06/26 14:15:55 INFO Master: Registering worker 10.244.0.19:60970 with 1 cores, 2.6 GB RAM
##步骤三:使用集群做点什么 获取Master服务的地址和端口。
$ kubectl get service spark-master
NAME LABELS SELECTOR IP(S) PORT(S)
spark-master name=spark-master name=spark-master 10.0.204.187 7077/TCP
使用SSH连接集群中的一个节点,在GCE/GKE(【译者注】指云服务谷歌计算引擎和谷歌Kubernetes引擎)上,你可以使用开发者控制台(更多细节点击这里)或者运行gcloud compute ssh ,name可以通过kubectl get nodes命令获得(更多细节在这)。
$ kubectl get nodes
NAME LABELS STATUS
kubernetes-minion-5jvu kubernetes.io/hostname=kubernetes-minion-5jvu Ready
kubernetes-minion-6fbi kubernetes.io/hostname=kubernetes-minion-6fbi Ready
kubernetes-minion-8y2v kubernetes.io/hostname=kubernetes-minion-8y2v Ready
kubernetes-minion-h0tr kubernetes.io/hostname=kubernetes-minion-h0tr Ready
$ gcloud compute ssh kubernetes-minion-5jvu --zone=us-central1-b
Linux kubernetes-minion-5jvu 3.16.0-0.bpo.4-amd64 #1 SMP Debian 3.16.7-ckt9-3~deb8u1~bpo70+1 (2015-04-27) x86_64
=== GCE Kubernetes node setup complete ===
me@kubernetes-minion-5jvu:~$
一旦登陆成功就可以使用Spark基础镜像了。在镜像中有一个脚本用来设置基于Master的IP和端口环境。
cluster-node $ sudo docker run -it gcr.io/google_containers/spark-base
root@f12a6fec45ce:/# . /setup_client.sh 10.0.204.187 7077
root@f12a6fec45ce:/# pyspark
Python 2.7.9 (default, Mar 1 2015, 12:57:24)
[GCC 4.9.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
15/06/26 14:25:28 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/__ / .__/\_,_/_/ /_/\_\ version 1.4.0
/_/
Using Python version 2.7.9 (default, Mar 1 2015 12:57:24)
SparkContext available as sc, HiveContext available as sqlContext.
>>> import socket
>>> sc.parallelize(range(1000)).map(lambda x:socket.gethostname()).distinct().collect()
['spark-worker-controller-u40r2', 'spark-worker-controller-hifwi', 'spark-worker-controller-vpgyg']
##结果 现在你已经为你的Spark master节点和Spark workers节点创建了服务、复制控制器和pods。你可以在下一篇文档中继续使用这个例子以及使用这个Spark集群。点击Spark文档获取更多信息。
##tl;dr
kubectl create -f spark-master.json
kubectl create -f spark-master-service.json
Make sure the Master Pod is running (use: kubectl get pods).
kubectl create -f spark-worker-controller.json