-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathsa.py
57 lines (45 loc) · 1.76 KB
/
sa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from optimise import ObjectiveFunction
import random
import math
import logging
def P(prev_score,next_score,temperature):
if next_score > prev_score:
return 1.0
else:
return math.exp( -abs(next_score-prev_score)/temperature )
def kirkpatrick_cooling(start_temp,alpha):
T=start_temp
while True:
yield T
T=alpha*T
def anneal(init_function,move_operator,objective_function,max_evaluations,start_temp,alpha):
# wrap the objective function (so we record the best)
objective_function=ObjectiveFunction(objective_function)
current=init_function()
current_score=objective_function(current)
num_evaluations=1
cooling_schedule=kirkpatrick_cooling(start_temp,alpha)
logging.info('anneal started: score=%f',current_score)
for temperature in cooling_schedule:
done = False
# examine moves around our current position
for next in move_operator(current):
if num_evaluations >= max_evaluations:
done=True
break
next_score=objective_function(next)
num_evaluations+=1
# probablistically accept this solution
# always accepting better solutions
p=P(current_score,next_score,temperature)
if random.random() < p:
current=next
current_score=next_score
break
# see if completely finished
if done: break
best_score=objective_function.best_score
best=objective_function.best
logging.info('final temperature: %f',temperature)
logging.info('anneal finished: num_evaluations=%d, best_score=%f',num_evaluations,best_score)
return (num_evaluations,best_score,best)