forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMultinomialKernel.cpp
124 lines (106 loc) · 4.44 KB
/
MultinomialKernel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
#include <ATen/ATen.h>
#include <ATen/Dispatch.h>
#include <ATen/native/Copy.h>
#include <ATen/native/TensorIterator.h>
#include <ATen/native/cpu/Loops.h>
#include <ATen/core/DistributionsHelper.h>
#include <ATen/native/UnaryOps.h>
namespace at {
namespace native {
namespace {
template <typename scalar_t>
void multinomial_with_replacement_apply(
Tensor& result,
const Tensor& self,
const int64_t n_sample,
c10::optional<Generator> generator) {
auto gen = get_generator_or_default<CPUGeneratorImpl>(generator, detail::getDefaultCPUGenerator());
// See Note [Acquire lock when using random generators]
std::lock_guard<std::mutex> lock(gen->mutex_);
int64_t n_categories = self.size(-1);
int64_t n_dist = self.dim() > 1 ? self.size(-2) : 1;
/* cumulative probability distribution vector */
Tensor cum_dist = at::empty({n_categories}, self.options());
const scalar_t * const self_ptr = self.data_ptr<scalar_t>();
scalar_t * const cum_dist_ptr = cum_dist.data_ptr<scalar_t>();
int64_t * const result_ptr = result.data_ptr<int64_t>();
auto self_stride_0 = self.dim() > 1 ? self.stride(-2) : 0;
auto self_stride_1 = self.stride(-1);
auto cum_dist_stride_0 = cum_dist.stride(0);
auto result_dist_stride_0 = result.dim() > 1 ? result.stride(-2) : 0;
auto result_dist_stride_1 = result.stride(-1);
for (int64_t i = 0; i < n_dist; i++) {
/* Get normalized cumulative distribution from prob distribution */
scalar_t sum = 0;
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
scalar_t val;
for (int64_t j = 0; j < n_categories; j++) {
val = self_ptr[i * self_stride_0 + j * self_stride_1];
TORCH_CHECK(val >= 0, "invalid multinomial distribution (encountering probability entry < 0)");
// NB: std::isfinite doesn't bode well with libc++ for half datatypes,
// so we manually cast it to a double and perform the check.
#if defined(_LIBCPP_VERSION)
TORCH_CHECK(std::isfinite(static_cast<double>(val)),
"invalid multinomial distribution (encountering probability entry = infinity or NaN)");
#else
TORCH_CHECK(std::isfinite(val),
"invalid multinomial distribution (encountering probability entry = infinity or NaN)");
#endif
sum += val;
cum_dist_ptr[j * cum_dist_stride_0] = sum;
}
TORCH_CHECK(sum > 0, "invalid multinomial distribution (sum of probabilities <= 0)");
/* normalize cumulative probability distribution so that last val is 1
i.e. doesn't assume original self row sums to one */
if ((sum > 0) || ((sum < 1.00001) && (sum > 0.99999))) {
for (int64_t j = 0; j < n_categories; j++) {
cum_dist_ptr[j * cum_dist_stride_0] /= sum;
}
}
for (int64_t j = 0; j < n_sample; j++) {
/* sample a probability mass from a uniform distribution */
at::uniform_real_distribution<double> uniform(0, 1);
double uniform_sample = uniform(gen);
/* Do a binary search for the slot in which the prob falls
ie cum_dist[row][slot-1] < uniform_prob < cum_distr[row][slot] */
int left_pointer = 0;
int right_pointer = n_categories;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int mid_pointer;
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
scalar_t cum_prob;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int sample_idx;
/* Make sure the last cumulative distribution bucket sums to 1 */
cum_dist_ptr[(n_categories - 1) * cum_dist_stride_0] = 1;
while(right_pointer - left_pointer > 0) {
mid_pointer = left_pointer + (right_pointer - left_pointer) / 2;
cum_prob = cum_dist_ptr[mid_pointer * cum_dist_stride_0];
if (cum_prob < uniform_sample) {
left_pointer = mid_pointer + 1;
}
else {
right_pointer = mid_pointer;
}
}
sample_idx = left_pointer;
/* store in result tensor (will be incremented for lua compat by wrapper) */
result_ptr[i * result_dist_stride_0 + j * result_dist_stride_1] = sample_idx;
}
}
}
static void multinomial_with_replacement_kernel_impl(
Tensor& result,
const Tensor& self,
const int64_t n_sample,
c10::optional<Generator> gen) {
AT_DISPATCH_FLOATING_TYPES_AND_HALF(self.scalar_type(), "multinomial", [&] {
multinomial_with_replacement_apply<scalar_t>(result, self, n_sample, gen);
});
}
}
REGISTER_DISPATCH(
multinomial_with_replacement_stub,
&multinomial_with_replacement_kernel_impl);
}
}