forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHistogram.cpp
214 lines (175 loc) · 9.41 KB
/
Histogram.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
#include <ATen/ATen.h>
#include <ATen/Dispatch.h>
#include <ATen/NativeFunctions.h>
#include <ATen/native/Histogram.h>
#include <ATen/native/Resize.h>
#include <tuple>
#include <c10/core/ScalarType.h>
#include <c10/core/DefaultDtype.h>
/* Implements a numpy-like histogram function running on cpu
* https://numpy.org/doc/stable/reference/generated/numpy.histogram.html
*
* - torch.histogram(input, bins, range=None, weight=None, density=False)
* input - tensor containing the input values. The histogram is computed over the flattened values.
* bins - int or 1D tensor. If int, defines the number of equal-width bins. If tensor, defines the
* sequence of bin edges including the rightmost edge.
* range - (float, float), optional. Defines the range of the bins.
* weight - tensor, optional. If provided, weight should have the same shape as input. Each value
* in input contributes its associated weight towards its bin's result (instead of 1).
* density - bool, optional. If False, the result will contain the number of samples (or total weight)
* in each bin. If True, the result is the value of the probability density function at the
* bin, normalized such that the integral over the range is 1.
*
* Returns:
* hist - 1D tensor containing the values of the histogram.
* bin_edges - 1D tensor containing the edges of the histogram bins. Contains hist.numel() + 1 elements.
* Bins include their left edge and exclude their right edge, with the exception of the
* rightmost bin which includes both of its edges.
*
* Restrictions are defined in histogram_check_inputs() and in select_outer_bin_edges().
*/
namespace at { namespace native {
DEFINE_DISPATCH(histogram_stub);
DEFINE_DISPATCH(histogram_linear_stub);
namespace {
/* Checks properties of input tensors input, bins, and weight.
*/
void histogram_check_inputs(const Tensor& input, const Tensor& bins, const c10::optional<Tensor>& weight) {
TORCH_CHECK(input.dtype() == bins.dtype(), "torch.histogram: input tensor and bins tensor should",
" have the same dtype, but got input ", input.dtype(), " and bins ", bins.dtype());
TORCH_CHECK(bins.dim() == 1, "torch.histogram: bins tensor should have dimension 1,",
" but got ", bins.dim(), " dimension");
TORCH_CHECK(bins.numel() > 0, "torch.histogram: bins tensor should have at least 1 element,",
" but got ", bins.numel(), " elements");
if (weight.has_value()) {
TORCH_CHECK(input.dtype() == weight.value().dtype(), "torch.histogram: if weight tensor is provided,"
" input tensor and weight tensor should have the same dtype, but got input(", input.dtype(), ")",
", and weight(", weight.value().dtype(), ")");
TORCH_CHECK(input.sizes() == weight.value().sizes(), "torch.histogram: if weight tensor is provided,"
" input tensor and weight tensor should have the same shape, but got input(", input.sizes(), ")",
", and weight(", weight.value().sizes(), ")");
}
}
/* Checks properties of output tensors hist and bin_edges, then resizes them.
*/
void histogram_prepare_out(const Tensor& input, int64_t bin_ct,
const Tensor& hist, const Tensor& bin_edges) {
TORCH_CHECK(input.dtype() == hist.dtype(), "torch.histogram: input tensor and hist tensor should",
" have the same dtype, but got input ", input.dtype(), " and hist ", hist.dtype());
TORCH_CHECK(input.dtype() == bin_edges.dtype(), "torch.histogram: input tensor and bin_edges tensor should",
" have the same dtype, but got input ", input.dtype(), " and bin_edges ", bin_edges.dtype());
TORCH_CHECK(bin_ct > 0,
"torch.histogram(): bins must be > 0, but got ", bin_ct);
at::native::resize_output(hist, bin_ct);
at::native::resize_output(bin_edges, bin_ct + 1);
TORCH_CHECK(hist.is_contiguous(), "torch.histogram: hist tensor must be contiguous");
}
/* Determines the outermost bin edges.
*/
std::pair<double, double> select_outer_bin_edges(const Tensor& input, c10::optional<c10::ArrayRef<double>> range) {
TORCH_CHECK(!range.has_value() || range.value().size() == 2, "torch.histogram: range should have 2 elements",
" if specified, but got ", range.value().size());
// Default range for empty input matching numpy.histogram's default
double leftmost_edge = 0., rightmost_edge = 1.;
if (range.has_value()) {
// range is specified
leftmost_edge = range.value()[0];
rightmost_edge = range.value()[1];
} else if (input.numel() > 0) {
// non-empty input
auto extrema = _aminmax(input);
leftmost_edge = std::get<0>(extrema).item<double>();
rightmost_edge = std::get<1>(extrema).item<double>();
}
TORCH_CHECK(!(std::isinf(leftmost_edge) || std::isinf(rightmost_edge) ||
std::isnan(leftmost_edge) || std::isnan(rightmost_edge)),
"torch.histogram: range of [", leftmost_edge, ", ", rightmost_edge, "] is not finite");
TORCH_CHECK(leftmost_edge <= rightmost_edge, "torch.histogram: min should not exceed max, but got",
" min ", leftmost_edge, " max ", rightmost_edge);
// Expand empty range to match numpy behavior and avoid division by 0 in normalization
if (leftmost_edge == rightmost_edge) {
leftmost_edge -= 0.5;
rightmost_edge += 0.5;
}
return std::make_pair(leftmost_edge, rightmost_edge);
}
/* histc's version of the logic for outermost bin edges.
*/
std::pair<double, double> histc_select_outer_bin_edges(const Tensor& input,
const Scalar& min, const Scalar& max) {
double leftmost_edge = min.to<double>();
double rightmost_edge = max.to<double>();
if (leftmost_edge == rightmost_edge) {
auto extrema = _aminmax(input);
leftmost_edge = std::get<0>(extrema).item<double>();
rightmost_edge = std::get<1>(extrema).item<double>();
}
if (leftmost_edge == rightmost_edge) {
leftmost_edge -= 1;
rightmost_edge += 1;
}
TORCH_CHECK(!(std::isinf(leftmost_edge) || std::isinf(rightmost_edge) ||
std::isnan(leftmost_edge) || std::isnan(rightmost_edge)),
"torch.histc: range of [", leftmost_edge, ", ", rightmost_edge, "] is not finite");
TORCH_CHECK(leftmost_edge < rightmost_edge, "torch.histc: max must be larger than min");
return std::make_pair(leftmost_edge, rightmost_edge);
}
} // namespace
/* Versions of histogram in which bins is a Tensor defining the sequence of bin edges.
*/
std::tuple<Tensor&, Tensor&>
histogram_out_cpu(const Tensor& self, const Tensor& bins,
const c10::optional<Tensor>& weight, bool density,
Tensor& hist, Tensor& bin_edges) {
histogram_check_inputs(self, bins, weight);
histogram_prepare_out(self, bins.numel() - 1, hist, bin_edges);
bin_edges.copy_(bins);
histogram_stub(self.device().type(), self, weight, density, hist, bin_edges);
return std::forward_as_tuple(hist, bin_edges);
}
std::tuple<Tensor, Tensor>
histogram_cpu(const Tensor& self, const Tensor& bins,
const c10::optional<Tensor>& weight, bool density) {
Tensor hist = at::empty({0}, self.options(), MemoryFormat::Contiguous);
Tensor bin_edges = at::empty({0}, bins.options(), MemoryFormat::Contiguous);
return histogram_out_cpu(self, bins, weight, density, hist, bin_edges);
}
/* Versions of histogram in which bins is an integer specifying the number of equal-width bins.
*/
std::tuple<Tensor&, Tensor&>
histogram_out_cpu(const Tensor& self, int64_t bin_ct, c10::optional<c10::ArrayRef<double>> range,
const c10::optional<Tensor>& weight, bool density,
Tensor& hist, Tensor& bin_edges) {
histogram_prepare_out(self, bin_ct, hist, bin_edges);
auto outer_bin_edges = select_outer_bin_edges(self, range);
linspace_cpu_out(outer_bin_edges.first, outer_bin_edges.second, bin_ct + 1, bin_edges);
histogram_check_inputs(self, bin_edges, weight);
histogram_linear_stub(self.device().type(), self, weight, density, hist, bin_edges, true);
return std::forward_as_tuple(hist, bin_edges);
}
std::tuple<Tensor, Tensor>
histogram_cpu(const Tensor& self, int64_t bin_ct, c10::optional<c10::ArrayRef<double>> range,
const c10::optional<Tensor>& weight, bool density) {
Tensor hist = at::empty({0}, self.options(), MemoryFormat::Contiguous);
Tensor bin_edges_out = at::empty({0}, self.options());
return histogram_out_cpu(self, bin_ct, range, weight, density, hist, bin_edges_out);
}
/* Narrowed interface for the legacy torch.histc function.
*/
Tensor& histogram_histc_cpu_out(const Tensor& self, int64_t bin_ct,
const Scalar& min, const Scalar& max, Tensor& hist) {
Tensor bin_edges = at::empty({0}, self.options());
histogram_prepare_out(self, bin_ct, hist, bin_edges);
auto outer_bin_edges = histc_select_outer_bin_edges(self, min, max);
linspace_cpu_out(outer_bin_edges.first, outer_bin_edges.second, bin_ct + 1, bin_edges);
histogram_check_inputs(self, bin_edges, {});
histogram_linear_stub(self.device().type(), self,
c10::optional<Tensor>(), false, hist, bin_edges, false);
return hist;
}
Tensor histogram_histc_cpu(const Tensor& self, int64_t bin_ct,
const Scalar& min, const Scalar& max) {
Tensor hist = at::empty({0}, self.options(), MemoryFormat::Contiguous);
return histogram_histc_cpu_out(self, bin_ct, min, max, hist);
}
}} // namespace at::native