forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBatching.cpp
120 lines (111 loc) · 5 KB
/
Batching.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
#include <ATen/BatchedTensorImpl.h>
#include <ATen/WrapDimUtils.h>
#include <ATen/VmapTransforms.h>
namespace at { namespace native {
// Adds a batch dimension to the tensor `self` out-of-place
Tensor _add_batch_dim(const Tensor& self, int64_t batch_dim, int64_t level) {
return addBatchDim(self, level, batch_dim);
}
static bool has_level(const Tensor& self, int64_t level) {
const auto* batched = maybeGetBatchedImpl(self);
if (!batched) {
return false;
}
auto bdims = batched->bdims();
auto* it = std::find_if(bdims.begin(), bdims.end(), [&](const BatchDim& bdim) {
return bdim.level() == level;
});
return it != bdims.end();
}
// Returns a Tensor with batch dim with level `level` turned into a regular dimension,
// as well as a logical dim index of where said dimension is in the returned tensor.
// A call to this function is always followed by a call to `movedim`.
//
// Preconditions: A BatchDim with level `level` must exist inside `batched`.
//
// The reason why we want to return the index of where said dimension is in the returned
// tensor is because we want to keep track of which dimension used to be the batch
// dimension so that we can move it to the correct logical dimension specified by
// `out_dims` in vmap. For example, if we had
// >>> x = torch.randn(2, 3, 5)
// >>> vmap(lambda x: x, in_dims=0, out_dims=1)(x)
// then right when we are about to exit the vmap block, x is a BatchedTensor with a
// batch dimension at (physical) index 0. Note that the batch dimension doesn't
// always have to exist at (physical) index 0. When we undo the batch dimension,
// we want to move it to dimension 1 (as specified by out_dims). So we return the
// index at which the batch dim appears so that we can move it to the correct place.
// later down the line via a call to `movedim`.
static std::pair<Tensor,int64_t> remove_existing_batch_dim(
const BatchedTensorImpl* batched, int64_t level) {
auto bdims = batched->bdims();
if (bdims.size() == 1) {
TORCH_INTERNAL_ASSERT(bdims[0].level() == level);
return std::make_pair(batched->value(), bdims[0].dim());
}
BatchDims new_bdims;
int64_t newly_exposed_physical_dim = -1;
new_bdims.reserve(bdims.size() - 1);
for (const auto& bdim : bdims) {
if (bdim.level() == level) {
newly_exposed_physical_dim = bdim.dim();
} else {
new_bdims.push_back(bdim);
}
}
// Because a BatchDim with level `level` must exist inside `batched,
// we should have found a `newly_exposed_logical_dim`.
TORCH_INTERNAL_ASSERT(newly_exposed_physical_dim != -1);
int64_t num_batch_dims_before_newly_exposed_physical_dim = std::count_if(
new_bdims.begin(), new_bdims.end(),
[&](const BatchDim& bdim) {
return bdim.dim() < newly_exposed_physical_dim;
});
int64_t newly_exposed_logical_dim =
newly_exposed_physical_dim - num_batch_dims_before_newly_exposed_physical_dim;
auto result_tensor = makeBatched(batched->value(), std::move(new_bdims));
return std::make_pair(std::move(result_tensor), newly_exposed_logical_dim);
}
// at::movedim but may return the original tensor if dst is the same as src.
static Tensor maybe_movedim(const Tensor& self, int64_t src, int64_t dst) {
auto logical_dim = self.dim();
src = maybe_wrap_dim(src, logical_dim);
dst = maybe_wrap_dim(dst, logical_dim);
if (src == dst) {
return self;
}
return self.movedim(src, dst);
}
// Removes the batch dim with level `level` from `self`. If this causes the
// last batch dim to be removed from a BatchedTensor, then this returns a
// regular Tensor.
//
// If the `level` of the batch dim to remove does not exist in `self`, then we
// add the batch dim in. This can happen if `self` didn't interact with a tensor
// inside the vmap level, for example,
// self = torch.randn(3)
// y = torch.randn(5)
// out = vmap(lambda x: vmap(lambda y: x)(y))(self)
// assert out.shape == (3, 5)
// Inside the inner vmap, `x` is a BatchedTensor with a single batch dimension
// corresponding to the *outer* vmap level and it doesn't have any dimensions that
// correspond to the inner vmap level so we need to create one for the user.
//
// `out_dim` controls where we should put the batch dimension in the output tensor.
Tensor _remove_batch_dim(const Tensor& self, int64_t level, int64_t batch_size, int64_t out_dim) {
if (!has_level(self, level)) {
auto self_sizes = self.sizes();
VmapDimVector expanded_sizes(self_sizes.begin(), self_sizes.end());
expanded_sizes.insert(expanded_sizes.begin() + out_dim, batch_size);
return self.expand(expanded_sizes);
}
// Must be batched if has_level(self, /*any_level*/)
const auto* batched = maybeGetBatchedImpl(self);
TORCH_INTERNAL_ASSERT(batched != nullptr);
Tensor self_without_bdim;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int64_t newly_exposed_logical_dim;
std::tie(self_without_bdim, newly_exposed_logical_dim) = remove_existing_batch_dim(batched, level);
return maybe_movedim(self_without_bdim, newly_exposed_logical_dim, out_dim);
}
} // namespace native
} // namespace at