forked from MrHelloBye/2D-Schroedinger-Solver
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmatrix_solvers.py
executable file
·115 lines (93 loc) · 2.36 KB
/
matrix_solvers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import numpy as np
def banded(Aa, va, up, down):
# This is copied from the Computational Physics book
# and it doesn't seem to work quite right
A = np.copy(Aa)
v = np.copy(va)
N = len(v)
# Gaussian elimination
for m in range(N):
# Normalization factor
div = A[up,m]
# Update the vector first
v[m] /= div
for k in range(1, down+1):
if m+k < N:
v[m+k] -= A[up+k,m] * v[m]
# Normalize and subtract the pivot row
for i in range(up):
j = m + up - i
if j<N:
A[i,j] /= div
for k in range(1,down+1):
A[i+k,j] -= A[up+k,m]*A[i,j]
for m in range(N-2,-1,-1):
for i in range(up):
j = m + up - i
if j<N:
v[m] -=A[i,j]*v[j]
print(A)
return v
def gauss_elim(Aa, va):
A = np.copy(Aa)
v = np.copy(va)
N = len(v)
for m in range(N):
# pivot the rows
# find the row with the largest initial element
maxval = np.copy(A[m,m])
for i in range(m,N,1):
# This should be the element in the rows
# under the current diagonal element
firstval = A[i,m]
if abs(firstval) > maxval:
maxval = firstval
pivotrow = i
# swap with current row
temp = np.copy(A[m])
A[m] = A[pivotrow]
A[pivotrow] = temp
temp = np.copy(v[m])
v[m] = v[pivotrow]
v[pivotrow] = temp
#normalize current row
v[m] /= A[m,m]
A[m] /= A[m,m]
for i in range(m+1, N, 1):
multiplier = A[i,m]
v[i] -= multiplier*v[m]
A[i] -= multiplier*A[m]
# Backsubstitution
x = np.empty_like(v)
for i in range(N-1,-1,-1):
# remember that range goes until one before the end
# i.e. has bounds like [,)
x[i] = v[i]
for j in range(i+1, N):
x[i] -= A[i,j]*x[j]
return x
def tridiag_solve(Aa, va):
A = np.copy(Aa)
v = np.copy(va)
N = len(v)
# Check that sizes are the same
if N != len(A):
print("Matrix:",A.shape,"and vector",v.shape," aren't same dimension")
for m in range(N):
# normalize current row
v[m] /= A[m,m]
A[m] /= A[m,m]
# subtract from next row
if m < N-1:
multiplier = A[m+1,m]
v[m+1] -= multiplier*v[m]
A[m+1] -= multiplier*A[m]
# Backsubstitution
x = np.empty_like(v)
for i in range(N-1,-1,-1):
# remember that range goes until one before the end
# i.e. has bounds like [,)
x[i] = v[i]
if i < N-1:
x[i] -= A[i,i+1]*x[i+1]
return x