-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpca_forest_cleaner.py
338 lines (292 loc) · 13.9 KB
/
pca_forest_cleaner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
#!/usr/bin/env python
# Tool to remove RFI from pulsar archives using principal component analysis and the isolation forest algorithm.
# Originally written by Lars Kuenkel
from __future__ import print_function
import numpy as np
import datetime
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import argparse
import psrchive
from sklearn.decomposition import PCA
from sklearn.ensemble import IsolationForest
from scipy.signal import medfilt
# import time
def parse_arguments():
parser = argparse.ArgumentParser(description='Commands for the cleaner')
parser.add_argument('archive', nargs='+', help='The chosen archives')
parser.add_argument('-n', '--components', type=int,
default=256, help='Number of pca components.')
parser.add_argument('-e', '--estimators', type=int,
default=100, help='Number of tree estimators.')
parser.add_argument('-s', '--samples', type=float, default=1.0, help='Fraction of samples that trains each estimators.\
If 1.0 all samples are used.')
parser.add_argument('-x', '--max_features', type=float, default=1.0,
help='Fraction of features that are used in each estimator.')
parser.add_argument('-f', '--features', action='store_true',
help='Add additional feature to the pca features (std, mean, ptp).')
parser.add_argument('-p', '--partition', type=int, default=[1], nargs='+',
help='Partitions the profiles into a number of parts for the calculation of the -f parameters\
Multiple Values can be used. Default: 1.')
parser.add_argument('-m', '--metrics', type=str, default=['std', 'fft', 'mean', 'ptp'], nargs='+', help='Choose which additional features are computed by -f.\
Available: mean, fft, std, ptp.')
parser.add_argument('-a', '--additional', type=float, default=0.0, help='Remove up to -a percent more profiles than at the point with highest SNR.\
Will lower SNR but might remove RFI profiles.')
parser.add_argument('-d', '--disable_pca', action='store_true',
help='Do not use pca features, ony use additional features.')
parser.add_argument('-c', '--contamination_plot', action='store_true',
help='Show plot that shows SNR at different contamination levels.')
parser.add_argument('-z', '--print_zap', action='store_true',
help='Creates a plot that shows which profiles get zapped.')
parser.add_argument('-b', '--bandpass', action='store_true',
help='Use bandpass correction.')
parser.add_argument('-q', '--quiet', action='store_true',
help='Reduces the verbosity of the program.')
parser.add_argument('-o', '--output', type=str, default='',
help="Name of the output file. If set to 'std' the pattern NAME.FREQ.MJD.ar will be used.")
parser.add_argument('-r', '--order', action='store_true',
help='Use the computed features in the pca calculation.')
parser.add_argument('-w', '--weight', action='store_true',
help='Do not use profiles which already have weight 0.')
parser.add_argument('--bad_chan', type=float, default=1, help='Fraction of subints that needs to be removed in order to remove the whole channel.')
parser.add_argument('--bad_subint', type=float, default=1, help='Fraction of channels that needs to be removed in order to remove the whole subint.')
args = parser.parse_args()
return args
def main(args):
for arch in args.archive:
if not args.quiet:
print("Input archive: %s" % arch)
ar = psrchive.Archive_load(arch)
if args.output == '':
orig_name = str(ar).split(':', 1)[1].strip()
o_name = orig_name + '_cleaned.ar'
else:
if args.output == 'std':
mjd = (float(ar.start_time().strtempo()) +
float(ar.end_time().strtempo())) / 2.0
name = ar.get_source()
cent_freq = ar.get_centre_frequency()
o_name = "%s.%.3f.%f.ar" % (name, cent_freq, mjd)
else:
o_name = args.output
ar, anomaly_plot_para = clean(ar, args, arch)
ar.unload(o_name)
print("Cleaned archive: %s" % o_name)
if args.contamination_plot:
plot_anomaly(*anomaly_plot_para)
def clean(ar, args, arch):
"""Cleans the archive and returns the cleaned copy.
"""
ar_name = ar.get_filename().split()[-1]
# Create copy of archive that is used to grab the profiles
if args.bandpass:
patient = calibrate_bandpass(ar)
else:
patient = ar.clone()
patient.pscrunch()
patient.remove_baseline()
# Grab the profiles after dedispersing them
patient.dedisperse()
data = patient.get_data()[:, 0, :, :]
if np.count_nonzero(data) == 0:
print("Archive is empty.")
return ar
profile_number = data[:, :, 0].size
pca_components = min(args.components, data.shape[2])
if not args.quiet:
print("Number of Profiles: %s" % profile_number)
if not args.disable_pca:
print("PCA parameters: n_components: %s" % pca_components)
print("IsolationForest parameters: n_estimators: %s max_samples: %s max_features: %s" % (
args.estimators, args.samples, args.max_features))
orig_shape = np.shape(data)
# Reshape the profiles for pca computation
data = np.reshape(data, (-1, orig_shape[2]))
# Delete precleaned profiles
if args.weight:
orig_weights = ar.get_weights().flatten()
known_rfi = np.where(orig_weights == 0)
known_non_rfi = np.where(orig_weights != 0)
data = np.delete(data, known_rfi, axis=0)
# Compute additional features if wanted
if args.features or args.disable_pca:
array_feat = compute_metrics(data)
if args.order:
data = np.concatenate((data, array_feat), axis=1)
# Compute the pca
if not args.disable_pca:
pca = PCA(n_components=pca_components, svd_solver="full")
data_pca = pca.fit_transform(data)
data_features = data_pca
if args.features and not args.order:
data_features = np.concatenate((data_features, array_feat), axis=1)
else:
data_features = array_feat
print("All features: %s" % (data_features.shape[1]))
# Compute the anomaly scores of the isolation forest algorithm
# The random_state creates a reproducible result but this may not be the best solution in the future
clf = IsolationForest(n_estimators=args.estimators, max_samples=args.samples,
max_features=args.max_features, n_jobs=2, random_state=1)
clf.fit(data_features)
anomaly_factors = clf.decision_function(data_features)
# Introduce known weights
if args.weight:
dummy_anomaly = np.zeros(orig_weights.shape)
dummy_anomaly[known_non_rfi] = anomaly_factors
dummy_anomaly[known_rfi] = np.inf
anomaly_factors_reshape = np.reshape(dummy_anomaly, orig_shape[0:2])
else:
anomaly_factors_reshape = np.reshape(anomaly_factors, orig_shape[0:2])
snrs = []
split_values = []
rfi_fracs = []
# Cycle through different rfi fractions and find the best snr
min_frac = 0
max_frac = 50
num_frac = 130
for rfi_frac in np.linspace(min_frac, max_frac, num=num_frac):
split_value = np.percentile(anomaly_factors, rfi_frac)
test_profile = np.sum(
data[anomaly_factors >= split_value, :orig_shape[2]], axis=0)
profile_object = psrchive.Profile(orig_shape[2])
profile_object.get_amps()[:] = test_profile
test_snr = profile_object.snr()
snrs.append(test_snr)
split_values.append(split_value)
rfi_fracs.append(rfi_frac)
# print test_snr
best_index = int(np.argmax(snrs) + args.additional * num_frac / max_frac)
best_snr = snrs[best_index]
best_frac = rfi_fracs[best_index]
best_split_value = split_values[best_index]
if not args.quiet:
print("SNR: %.1f RFI fraction: %.4f" %
(best_snr, best_frac * 0.01))
# Set the weights in the archive
set_weights_archive(ar, anomaly_factors_reshape, best_split_value)
# Test if whole channel or subints should be removed
if args.bad_chan != 1 or args.bad_subint != 1:
ar = find_bad_parts(ar, args)
# Create plot that shows zapped( red) and unzapped( blue) profiles if needed
if args.print_zap:
plt.imshow(anomaly_factors_reshape.T, vmin=best_split_value - 0.0001, vmax=best_split_value, aspect='auto',
interpolation='nearest', cmap=cm.coolwarm)
plt.gca().invert_yaxis()
plt.savefig("%s_%s_%s_%s.png" % (ar_name, args.components,
args.estimators, args.samples), bbox_inches='tight')
# Create log that contains the used parameters
with open("clean.log", "a") as myfile:
myfile.write("\n %s: Cleaned %s with %s"
% (datetime.datetime.now(), ar_name, args))
return ar, (anomaly_factors, snrs, rfi_fracs)
def set_weights_archive(archive, anomaly_values, split_value):
"""Apply the weights to an archive according to the classfication result.
"""
for (isub, ichan) in np.argwhere(anomaly_values < split_value):
integ = archive.get_Integration(int(isub))
integ.set_weight(int(ichan), 0.0)
def plot_anomaly(anomaly_factors, snrs, rfi_fracs):
# Show snr evolution for different split values
x_vals_a = np.linspace(0, 100, num=len(anomaly_factors))
x_vals_b = np.linspace(np.min(rfi_fracs), np.max(rfi_fracs), num=len(snrs))
plt.plot(x_vals_a, np.sort(anomaly_factors) / np.max(anomaly_factors))
plt.plot(x_vals_b, snrs / np.max(snrs))
plt.show()
def calibrate_bandpass(ar):
# Calibrates the bandpass and grabs data. Based on:
# https://github.com/sosl/public_codes/blob/master/pulsar/bandpass/bandpass_correction.py
arch = ar.clone()
arch.pscrunch()
arch.tscrunch()
subint = arch.get_Integration(0)
(bl_mean, bl_var) = subint.baseline_stats()
bl_mean = bl_mean.squeeze()
bl_var = bl_var.squeeze()
non_zeroes = np.where(bl_mean != 0.0)
# min_freq = arch.get_Profile(0, 0, 0).get_centre_frequency()
# max_freq = arch.get_Profile(
# 0, 0, ar.get_nchan() - 1).get_centre_frequency()
smoothed = medfilt(bl_mean, 21)
# plt.plot(bl_mean)
# plt.plot(smoothed)
# plt.show()
# fig1 = plt.plot(freqs[non_zeroes],bl_mean[non_zeroes])
# xlab = plt.xlabel('frequency [MHz]')
# ylab = plt.ylabel('power [arbitrary]')
# plt.savefig(args.ar+"_bandpass.png")
# plt.clf()
arch = ar.clone()
arch.remove_baseline()
arch.pscrunch()
bl_mean_avg = np.average(bl_mean[non_zeroes])
for isub in range(arch.get_nsubint()):
for ipol in range(arch.get_npol()):
for ichan in range(arch.get_nchan()):
prof = arch.get_Profile(isub, ipol, ichan)
if ichan in non_zeroes[0]:
prof.scale(bl_mean_avg / smoothed[ichan])
# else:
# prof.set_weight(0.0)
return arch
def compute_metrics(data):
# Compute the various metrics of the profiles
# array_feat = np.array([]).reshape(data.shape[0],0)
feat = []
for parts in args.partition:
one_part_size = data.shape[1] / float(parts)
for i in range(parts):
data_part = data[:, int(i * one_part_size):int((i + 1) * one_part_size)]
if 'std' in args.metrics:
array_std = np.log(np.std(data_part, axis=1))
feat.append(array_std)
if 'mean' in args.metrics:
# array_mean = np.log(np.abs(np.mean(data_part, axis=1)))
# array_mean = np.mean(data_part, axis=1)
array_mean = np.tanh(np.mean(data_part, axis=1))
feat.append(array_mean)
if 'ptp' in args.metrics:
array_ptp = np.log(np.ptp(data_part, axis=1))
feat.append(array_ptp)
if 'fft' in args.metrics:
array_fft = np.log(np.max(np.abs(np.fft.rfft(
data_part - np.expand_dims(np.mean(data_part, axis=1), axis=1), axis=1)), axis=1))
feat.append(array_fft)
if 'med' in args.metrics:
array_med = np.max(
np.abs(data_part - medfilt(data_part, kernel_size=(1, 5))), axis=1)
feat.append(array_med)
array_feat = np.asarray(feat).T
# for i in range(array_feat.shape[1]):
# plt.imshow(np.reshape(array_feat[:,i].T, orig_shape[0:2]), aspect='auto')
# plt.colorbar()
# plt.savefig("metric_%s.png"%i)
# plt.close('all')
return array_feat
def find_bad_parts(archive, args):
"""Checks whether whole channels or subints should be removed
"""
weights = archive.get_weights()
n_subints = archive.get_nsubint()
n_channels = archive.get_nchan()
n_bad_channels = 0
n_bad_subints = 0
for i in range(n_subints):
bad_frac = 1 - np.count_nonzero(weights[i, :]) / float(n_channels)
if bad_frac > args.bad_subint:
for j in range(n_channels):
integ = archive.get_Integration(int(i))
integ.set_weight(int(j), 0.0)
n_bad_subints += 1
for j in range(n_channels):
bad_frac = 1 - np.count_nonzero(weights[:, j]) / float(n_subints)
if bad_frac > args.bad_chan:
for i in range(n_subints):
integ = archive.get_Integration(int(i))
integ.set_weight(int(j), 0.0)
n_bad_channels += 1
if not args.quiet and n_bad_channels + n_bad_subints != 0:
print("Removed %s bad subintegrations and %s bad channels." % (n_bad_subints, n_bad_channels))
return archive
if __name__ == "__main__":
args = parse_arguments()
main(args)