From 8626abf8b59b731dd35b8e17401154eddf9bdb81 Mon Sep 17 00:00:00 2001 From: Eugene Yurtsev Date: Mon, 12 Aug 2024 13:12:28 -0400 Subject: [PATCH] togetherai[patch]: Update API Reference for together AI embeddings model (#25295) Issue: https://github.com/langchain-ai/langchain/issues/24856 --- .../together/langchain_together/embeddings.py | 69 +++++++++++++++++-- 1 file changed, 63 insertions(+), 6 deletions(-) diff --git a/libs/partners/together/langchain_together/embeddings.py b/libs/partners/together/langchain_together/embeddings.py index c19a76e1a063d..d568aeff4f6b9 100644 --- a/libs/partners/together/langchain_together/embeddings.py +++ b/libs/partners/together/langchain_together/embeddings.py @@ -35,17 +35,74 @@ class TogetherEmbeddings(BaseModel, Embeddings): - """TogetherEmbeddings embedding model. + """Together embedding model integration. - To use, set the environment variable `TOGETHER_API_KEY` with your API key or - pass it as a named parameter to the constructor. + Setup: + Install ``langchain_together`` and set environment variable + ``TOGETHER_API_KEY``. + + .. code-block:: bash + + pip install -U langchain_together + export TOGETHER_API_KEY="your-api-key" + + Key init args — completion params: + model: str + Name of Together model to use. + + Key init args — client params: + api_key: Optional[SecretStr] + + See full list of supported init args and their descriptions in the params section. + + Instantiate: + .. code-block:: python + + from __module_name__ import TogetherEmbeddings + + embed = TogetherEmbeddings( + model="togethercomputer/m2-bert-80M-8k-retrieval", + # api_key="...", + # other params... + ) + + Embed single text: + .. code-block:: python + + input_text = "The meaning of life is 42" + vector = embed.embed_query(input_text) + print(vector[:3]) - Example: .. code-block:: python - from langchain_together import TogetherEmbeddings + [-0.024603435769677162, -0.007543657906353474, 0.0039630369283258915] + + Embed multiple texts: + .. code-block:: python + + input_texts = ["Document 1...", "Document 2..."] + vectors = embed.embed_documents(input_texts) + print(len(vectors)) + # The first 3 coordinates for the first vector + print(vectors[0][:3]) + + .. code-block:: python + + 2 + [-0.024603435769677162, -0.007543657906353474, 0.0039630369283258915] + + Async: + .. code-block:: python + + vector = await embed.aembed_query(input_text) + print(vector[:3]) + + # multiple: + # await embed.aembed_documents(input_texts) + + .. code-block:: python - model = TogetherEmbeddings() + [-0.009100092574954033, 0.005071679595857859, -0.0029193938244134188] """ client: Any = Field(default=None, exclude=True) #: :meta private: