forked from wubinzzu/DER
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsolver.py
327 lines (292 loc) · 20 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
from data_loader import DataLoader
from model.DER import *
import tensorflow as tf
import time
import numpy as np
import pandas as pd
import os
import itertools
#from compiler.ast import flatten
import collections
def flatten(x):
result = []
for el in x:
if isinstance(x, collections.Iterable) and not isinstance(el, str):
result.extend(flatten(el))
else:
result.append(el)
return result
class Solver:
def __init__(self, args, id):
self.args = args
self.data_loader = DataLoader(args)
self.data_loader.gen_data('train')
self.data_loader.gen_data('validation')
self.data_loader.gen_data('test')
self.data_loader.gen_data('train_validation')
self.model_args = self.args
self.model_args.user_number = self.data_loader.user_num
self.model_args.item_number = self.data_loader.item_num
self.model_args.word_number = self.data_loader.word_num
self.model_args.max_interaction_length = self.data_loader.max_interaction_length
self.model_args.max_sentence_length = self.data_loader.max_sentence_length
self.model_args.max_sentence_word_length = self.data_loader.max_sentence_word_length
self.model_args.time_bin_number = self.data_loader.time_bin_number
self.model_args.global_rating = self.data_loader.global_rating
self.experiment_id = id
self.model = DER(self.model_args)
self.model.build_loss()
print(self.model_args)
# Get loss, evaluation, operation, rating and attention prediction.
self.loss = self.model.get_loss()
self.evaluation_mse_sum = self.model.get_mse_sum()
self.op = self.model.get_train_op()
self.rating_prediction = self.model.get_rating_prediction()
self.attention_prediction = self.model.get_attention_weight()
self.item_reviews_dict = self.data_loader.item_reviews_dict
self.item_real_reviews_dict = self.data_loader.item_real_reviews_dict
def save_parameters(self):
path = os.path.join(self.args.output_path, str(self.experiment_id))
if not os.path.exists(path):
os.makedirs(path)
self.args.logger.info('saving parameters ...')
arg_dict = dict()
for k, v in self.model_args.__dict__.items():
if k != 'logger':
arg_dict[k] = v
pickle.dump(arg_dict, open(os.path.join(self.args.output_path, str(self.experiment_id), 'model_args'), 'wb'))
t = pd.DataFrame(self.train_rmse_vs_epoch)
t.to_csv(os.path.join(self.args.output_path, str(self.experiment_id), 'train_rmse_vs_epoch'), index=False, header=None)
t = pd.DataFrame(self.validation_rmse_vs_epoch)
t.to_csv(os.path.join(self.args.output_path, str(self.experiment_id), 'validation_rmse_vs_epoch'), index=False, header=None)
def save_attention(self):
self.args.logger.info('saving attention ...')
self.step = 0
self.result = []
max_step = self.data_loader.test_records_num / self.args.batch_size
while self.step <= max_step:
if (self.step + 1) * self.args.batch_size > self.data_loader.test_records_num:
b = self.data_loader.test_records_num - self.step * self.args.batch_size
else:
b = self.args.batch_size
start = self.step * self.args.batch_size
end = start + b
batch_users, batch_previous_items, batch_previous_times, batch_previous_reviews, \
batch_previous_ratings, batch_previous_lengths, batch_current_items, batch_current_ratings, \
batch_current_input_reviews, batch_current_input_reviews_users, batch_current_output_review, batch_current_input_reviews_length \
= self.data_loader.gen_batch_data(start, end, 'test')
self.step += 1
att, a, b, c = self.sess.run([self.model.item_review_attention, self.model.out_att, self.model.review, self.model.user_att],
feed_dict={self.model.user_plh: batch_users,
self.model.previous_items_plh: batch_previous_items,
self.model.previous_times_plh: batch_previous_times,
self.model.previous_reviews_plh: batch_previous_reviews,
self.model.previous_ratings_plh: batch_previous_ratings,
self.model.previous_lengths_plh: batch_previous_lengths,
self.model.current_item_plh: batch_current_items,
self.model.current_rating_plh: batch_current_ratings,
self.model.current_input_reviews_plh: batch_current_input_reviews,
self.model.current_input_reviews_users_plh: batch_current_input_reviews_users,
self.model.current_input_reviews_length_plh: batch_current_input_reviews_length}
)
'''
print np.array(att).shape
print att[0]
print att[1]
print np.array(a).shape
print a[0]
print np.array(b).shape
print b[0]
print np.array(c).shape
print c
print d
raw_input()
'''
for i in range(len(att)):
user = batch_users[i]
item = batch_current_items[i]
attention = '@@@'.join([str(k[0]) for k in att[i]])
reviews = [j[1] for j in self.item_real_reviews_dict[str(batch_current_items[i])] if j[0] != str(batch_users[i])]
reviews = list(itertools.chain.from_iterable(reviews))[:self.model_args.max_sentence_length]
reviews = '@@@'.join(reviews)
line = str(user) + '||' + str(item) + '||' + attention + '||' + reviews
self.result.append(line)
path = os.path.join(self.args.output_path, str(self.experiment_id))
if not os.path.exists(path):
os.makedirs(path)
t = pd.DataFrame(self.result)
t.to_csv(os.path.join(self.args.output_path, str(self.experiment_id), 'attention_results'), index=False, header=None)
def run(self):
self.args.logger.info('running ...')
conf = tf.ConfigProto(allow_soft_placement=True)
conf.gpu_options.allow_growth = True
self.min_rmse = 1000000
self.test_min_rmse = 1000000
self.train_rmse_vs_epoch = []
self.validation_rmse_vs_epoch = []
self.test_rmse_vs_epoch = []
with tf.Session(config=conf) as self.sess:
self.model.model_init(self.sess)
for iter in range(self.args.epoch):
self.args.logger.info('*************************************')
self.args.logger.info('epoch: ' + str(iter) + ' begin.')
s = time.time()
self.data_loader.shuffle()
t_loss = 0.0
self.step = 0
if self.model_args.mode == 'validation':
max_step = self.data_loader.train_records_num/self.args.batch_size
record_number = self.data_loader.train_records_num
else:
max_step = self.data_loader.train_validation_records_num / self.args.batch_size
record_number = self.data_loader.train_validation_records_num
while self.step <= max_step:
if (self.step+1) * self.args.batch_size > record_number:
b = record_number - self.step * self.args.batch_size
else:
b = self.args.batch_size
start = self.step * self.args.batch_size
end = start + b
if end > start:
if self.model_args.mode == 'validation':
batch_users, batch_previous_items, batch_previous_times, batch_previous_reviews, \
batch_previous_ratings, batch_previous_lengths, batch_current_items, batch_current_ratings, \
batch_current_input_reviews, batch_current_input_reviews_users, batch_current_output_review, batch_current_input_reviews_length \
= self.data_loader.gen_batch_data(start, end, 'train')
else:
batch_users, batch_previous_items, batch_previous_times, batch_previous_reviews, \
batch_previous_ratings, batch_previous_lengths, batch_current_items, batch_current_ratings, \
batch_current_input_reviews, batch_current_input_reviews_users, batch_current_output_review, batch_current_input_reviews_length \
= self.data_loader.gen_batch_data(start, end, 'train_validation')
self.sess.run(self.op, feed_dict={self.model.user_plh: batch_users,
self.model.previous_items_plh: batch_previous_items,
self.model.previous_times_plh: batch_previous_times,
self.model.previous_reviews_plh: batch_previous_reviews,
self.model.previous_ratings_plh: batch_previous_ratings,
self.model.previous_lengths_plh: batch_previous_lengths,
self.model.current_item_plh: batch_current_items,
self.model.current_rating_plh: batch_current_ratings,
self.model.current_input_reviews_plh: batch_current_input_reviews,
self.model.current_input_reviews_users_plh: batch_current_input_reviews_users,
self.model.current_input_reviews_length_plh: batch_current_input_reviews_length}
)
self.step += 1
time_consuming = str(time.time() - s)
self.args.logger.info('epoch: ' + str(iter) + ' end. time consuming: ' + time_consuming)
self.args.logger.info('epoch: ' + str(iter) + ' eval begin.')
s = time.time()
mse_sum = 0.0
self.step = 0
max_step = self.data_loader.train_records_num / self.args.batch_size
while self.step <= max_step:
if (self.step+1) * self.args.batch_size > self.data_loader.train_records_num:
b = self.data_loader.train_records_num - self.step * self.args.batch_size
else:
b = self.args.batch_size
start = self.step * self.args.batch_size
end = start + b
if end > start:
batch_users, batch_previous_items, batch_previous_times, batch_previous_reviews, \
batch_previous_ratings, batch_previous_lengths, batch_current_items, batch_current_ratings, \
batch_current_input_reviews, batch_current_input_reviews_users, batch_current_output_review, batch_current_input_reviews_length \
= self.data_loader.gen_batch_data(start, end, 'train')
loss = self.sess.run(self.evaluation_mse_sum,
feed_dict={self.model.user_plh: batch_users,
self.model.previous_items_plh: batch_previous_items,
self.model.previous_times_plh: batch_previous_times,
self.model.previous_reviews_plh: batch_previous_reviews,
self.model.previous_ratings_plh: batch_previous_ratings,
self.model.previous_lengths_plh: batch_previous_lengths,
self.model.current_item_plh: batch_current_items,
self.model.current_rating_plh: batch_current_ratings,
self.model.current_input_reviews_plh: batch_current_input_reviews,
self.model.current_input_reviews_users_plh: batch_current_input_reviews_users,
self.model.current_input_reviews_length_plh: batch_current_input_reviews_length}
)
mse_sum += np.array(loss).sum()
self.step += 1
rmse = np.sqrt(mse_sum / self.data_loader.train_records_num)
self.train_rmse_vs_epoch.append(rmse)
self.args.logger.info('epoch: ' + str(iter) + ' training loss: ' + str(rmse))
mse_sum = 0.0
self.step = 0
max_step = self.data_loader.validation_records_num / self.args.batch_size
while self.step <= max_step:
if (self.step + 1) * self.args.batch_size > self.data_loader.validation_records_num:
b = self.data_loader.validation_records_num - self.step * self.args.batch_size
else:
b = self.args.batch_size
start = self.step * self.args.batch_size
end = start + b
if end > start:
batch_users, batch_previous_items, batch_previous_times, batch_previous_reviews, \
batch_previous_ratings, batch_previous_lengths, batch_current_items, batch_current_ratings, \
batch_current_input_reviews, batch_current_input_reviews_users, batch_current_output_review, batch_current_input_reviews_length \
= self.data_loader.gen_batch_data(start, end, 'validation')
error = self.sess.run(self.evaluation_mse_sum, feed_dict={self.model.user_plh: batch_users,
self.model.previous_items_plh: batch_previous_items,
self.model.previous_times_plh: batch_previous_times,
self.model.previous_reviews_plh: batch_previous_reviews,
self.model.previous_ratings_plh: batch_previous_ratings,
self.model.previous_lengths_plh: batch_previous_lengths,
self.model.current_item_plh: batch_current_items,
self.model.current_rating_plh: batch_current_ratings,
self.model.current_input_reviews_plh: batch_current_input_reviews,
self.model.current_input_reviews_users_plh: batch_current_input_reviews_users,
self.model.current_input_reviews_length_plh: batch_current_input_reviews_length}
)
mse_sum += np.array(error).sum()
self.step += 1
rmse = np.sqrt(mse_sum/self.data_loader.validation_records_num)
self.validation_rmse_vs_epoch.append(rmse)
if rmse < self.min_rmse:
self.min_rmse = rmse
#self.save_attention()
self.args.logger.info('epoch: ' + str(iter) + ' validation rmse: ' + str(rmse))
self.args.logger.info('current best rmse: ' + str(self.min_rmse))
mse_sum = 0.0
self.step = 0
max_step = self.data_loader.test_records_num / self.args.batch_size
while self.step <= max_step:
if (self.step + 1) * self.args.batch_size > self.data_loader.test_records_num:
b = self.data_loader.test_records_num - self.step * self.args.batch_size
else:
b = self.args.batch_size
start = self.step * self.args.batch_size
end = start + b
if end > start:
batch_users, batch_previous_items, batch_previous_times, batch_previous_reviews, \
batch_previous_ratings, batch_previous_lengths, batch_current_items, batch_current_ratings, \
batch_current_input_reviews, batch_current_input_reviews_users, batch_current_output_review, batch_current_input_reviews_length \
= self.data_loader.gen_batch_data(start, end, 'test')
error = self.sess.run(self.evaluation_mse_sum, feed_dict={self.model.user_plh: batch_users,
self.model.previous_items_plh: batch_previous_items,
self.model.previous_times_plh: batch_previous_times,
self.model.previous_reviews_plh: batch_previous_reviews,
self.model.previous_ratings_plh: batch_previous_ratings,
self.model.previous_lengths_plh: batch_previous_lengths,
self.model.current_item_plh: batch_current_items,
self.model.current_rating_plh: batch_current_ratings,
self.model.current_input_reviews_plh: batch_current_input_reviews,
self.model.current_input_reviews_users_plh: batch_current_input_reviews_users,
self.model.current_input_reviews_length_plh: batch_current_input_reviews_length}
)
# print error
mse_sum += np.array(error).sum()
self.step += 1
rmse = np.sqrt(mse_sum / self.data_loader.test_records_num)
self.test_rmse_vs_epoch.append(rmse)
if rmse < self.test_min_rmse:
self.test_min_rmse = rmse
self.save_attention()
self.args.logger.info('epoch: ' + str(iter) + ' test rmse: ' + str(rmse))
self.args.logger.info('current best test rmse: ' + str(self.test_min_rmse))
time_consuming = str(time.time() - s)
self.args.logger.info('epoch: ' + str(iter) + ' eval end. time consuming: ' + time_consuming)
self.args.logger.info('*************************************')
self.save_parameters()
self.sess.close()
if self.model_args.mode == 'validation':
return self.min_rmse
else:
return self.test_min_rmse