forked from wubinzzu/DER
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluate.py
114 lines (81 loc) · 3.5 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import pickle
import pandas as pd
import os
import numpy as np
experiment_id = 0
attention_path = os.path.join('/content/DER/results', str(experiment_id), 'attention_results')
attention = pd.read_csv(attention_path, header=None, dtype='str')
path = '/content/DER/data/der_data/auto/'
id_user_dict = {v:k for k,v in list(pickle.load(open(path+'user_id_dict', 'rb')).items())}
id_item_dict = {v:k for k,v in list(pickle.load(open(path+'item_id_dict', 'rb')).items())}
id_word_dict = pickle.load(open(path+'id_word_dict', 'rb'))
user_reviews_dict = pickle.load(open(path+'user_review', 'rb'))
item_reviews_dict = pickle.load(open(path+'item_real_reviews', 'rb'))
train_rmse_path = os.path.join('/content/DER/results', str(experiment_id), 'train_rmse_vs_epoch')
train_rmse = pd.read_csv(train_rmse_path, header=None, dtype='str')
validation_rmse_path = os.path.join('/content/DER/results', str(experiment_id), 'validation_rmse_vs_epoch')
validation_rmse = pd.read_csv(validation_rmse_path, header=None, dtype='str')
parameters = pickle.load(open(os.path.join('/content/DER/results', str(experiment_id), 'model_args'), 'rb'))
num = 0
final_result = dict()
for line in attention.values:
num += 1
l_list = line[0].split('||')
user = l_list[0]
item = l_list[1]
sentences = np.array(l_list[3].split('@@@'))
attention = np.array([float(i) for i in l_list[2].split('@@@')])[:len(sentences)]
max_index = np.argsort(attention)[::-1][:5]
max_index = [i for i in max_index if i in range(len(sentences))]
#print attention[max_index]
#print sentences[max_index]
user_r = user_reviews_dict[id_user_dict[user]]
user_r_index = [i.split('||')[1] for i in user_r]
user_r_content = [i.split('||')[0] for i in user_r]
user_r_item = [i.split('||')[2] for i in user_r]
sort_index = np.argsort(user_r_index)
previous_time = list(np.array(user_r_index)[sort_index])
previous_reviews = list(np.array(user_r_content)[sort_index])
record = str(user) + '||' + '@@@'.join(previous_time) + '||' + '@@@'.join(previous_reviews) \
+ '||' + '@@@'.join([str(i) for i in attention[max_index]]) + '||' + '@@@'.join(sentences[max_index])
if item not in list(final_result.keys()):
final_result[item] = [record]
else:
final_result[item].append(record)
for k,v in list(final_result.items()):
print('item reviews:')
print(str(k))
print(item_reviews_dict[k])
print('user attention for this item:')
for line in v:
line_list = line.split('||')
print('user:')
print(line_list[0])
print('previous review')
for p in range(len(line_list[1].split('@@@')[:-1])):
print('time:')
print(line_list[1].split('@@@')[:-1][p])
print('content:')
print(line_list[2].split('@@@')[:-1][p])
print('----------------------------')
print('current time:')
print(line_list[1].split('@@@')[-1])
print('current review:')
print(line_list[2].split('@@@')[-1])
print('----------------------------')
print('attention:')
print(line_list[3].split('@@@'))
print('sentences:')
print(line_list[4].split('@@@'))
print('&&&&&&&&&&&&&&&&&&&&&&&&&&&&')
if int(k) == 669:
input()
print('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%')
train = []
validation = []
for line in train_rmse.values:
train.append(float(line[0]))
for line in validation_rmse.values:
validation.append(float(line[0]))
print(train)
print(validation)