-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathndcgr_s_backward.m
62 lines (57 loc) · 1.63 KB
/
ndcgr_s_backward.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
function [bot] = ndcglb_backward(layer, bot, top)
% Backprop for NDCGr, the continuous relaxation of tie-aware NDCG
% (simplified version)
%
X = squeeze(bot.x); % nbitsxN
[nbits, N] = size(X);
% recover saved variables
opts = layer.opts;
onGPU = numel(opts.gpus) > 0;
vInd = top.aux.vInd;
Phi = top.aux.Phi;
Dist = top.aux.Dist;
histW = top.aux.histW;
histC = top.aux.histC;
Cbar = top.aux.Cbar;
Gns = top.aux.Gns;
Ghat = top.aux.Ghat;
DCGi = top.aux.DCGi;
L = length(histC);
Naff = length(vInd);
% 1. d(NDCGr_s)/d(c_d,v)
d_NDCG_c = cell(1, Naff);
for v = 1:Naff
b = 1/log(2) * Ghat ./ log2(Cbar).^2 ./ Cbar;
t = Gns(v) ./ log2(Cbar) - b/2 ... % diagonal part
- b * triu(ones(L), 1)'; % off-diagonal part
% normalize by ideal DCG
t = bsxfun(@rdivide, t, DCGi);
t(isnan(t)|isinf(t)) = 0;
d_NDCG_c{v} = t;
end
% 3. d(NDCGr_s)/d(Phi)
d_NDCG_Phi = zeros(nbits, N);
if onGPU, d_NDCG_Phi = gpuArray(d_NDCG_Phi); end
for l = 1:L
% NxN matrix of delta'(i, j, l) for fixed l
dpulse = triPulseDeriv(Dist, histC(l), histW); % NxN
sumA = 0;
for v = 1:Naff
av = diag(d_NDCG_c{v}(:, l));
bv = dpulse .* vInd{v};
Av = av * bv + bv * av;
sumA = sumA + Av;
end
d_NDCG_Phi = d_NDCG_Phi - 0.5 * Phi * sumA;
end
% 4. d(DCGLB)/d(x)
% completing the chain rule: tanh relaxation
% Note: tanh(x) = 2*sigmoid(2x)-1
sigm = (Phi + 1) / 2;
d_Phi_x = 2 .* sigm .* (1-sigm) * opts.gamma_p; % nbitsxN
d_NDCG_x = -d_NDCG_Phi .* d_Phi_x;
% 5. final
bot.dzdx = zeros(size(bot.x), 'single');
if onGPU, bot.dzdx = gpuArray(bot.dzdx); end
bot.dzdx(1, 1, :, :) = single(d_NDCG_x);
end