-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtrain.lua
308 lines (266 loc) · 10.6 KB
/
train.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
--
-- Copyright (c) 2016, Facebook, Inc.
-- All rights reserved.
--
-- This source code is licensed under the BSD-style license found in the
-- LICENSE file in the root directory of this source tree. An additional grant
-- of patent rights can be found in the PATENTS file in the same directory.
--
-- The training loop and learning rate schedule
--
local optim = require 'optim'
local M = {}
local Trainer = torch.class('resnet.Trainer', M)
function Trainer:__init(model, criterion, opt, optimState)
self.model = model
self.criterion = criterion
self.optimState = optimState or {
learningRate = opt.LR,
learningRateDecay = 0.0,
momentum = opt.momentum,
nesterov = true,
dampening = 0.0,
weightDecay = opt.weightDecay,
}
self.opt = opt
self.params, self.gradParams = model:getParameters()
end
function Trainer:train(epoch, dataloader)
-- Trains the model for a single epoch
self.optimState.learningRate = self:learningRate(epoch)
local timer = torch.Timer()
local dataTimer = torch.Timer()
local function feval()
return self.criterion.output, self.gradParams
end
local trainSize = dataloader:size()
local top1Sum, top5Sum, lossSum = 0.0, 0.0, 0.0
local N = 0
print('=> Training epoch # ' .. epoch)
-- set the batch norm to training mode
self.model:training()
local dataprepro = self.opt.dataprepro
-- print("dataprepro:" .. dataprepro)
for n, sample in dataloader:run() do
local dataTime = dataTimer:time().real
-- min = torch.min(sample.input)
max = torch.max(sample.input)
if max <= 0 then
print(" | ignore this sample totally a background volume!")
goto continue
end
-- Copy input and target to the GPU
self:copyInputs(sample)
local batchSize = self.input:size(1)
if batchSize < self.opt.batchSize then
print(" | ignore this batch which size is not enough!")
goto continue
end
local output = self.model:forward(self.input):float()
self.target = self.target:cuda()
-- print("train...")
-- print(batchSize)
-- print(self.opt.batchSize)
-- print(output:size())
-- print(self.target:size())
-- print(torch.min(self.target))
-- print(torch.max(self.target))
local loss = self.criterion:forward(self.model.output, self.target)
self.model:zeroGradParameters()
self.criterion:backward(self.model.output, self.target)
self.model:backward(self.input, self.criterion.gradInput)
optim.sgd(feval, self.params, self.optimState)
local top1, top5 = self:computeScore(output, self.target, 1)
top1Sum = top1Sum + top1*batchSize
top5Sum = top5Sum + top5*batchSize
lossSum = lossSum + loss*batchSize
N = N + batchSize
print((' | Epoch: [%3d][%3d/%3d] Time %.3f Data %.3f Loss %1.8f top1 %7.3f top5 %7.3f LR %7.3f'):format(
epoch, n, trainSize, timer:time().real, dataTime, loss, top1, top5, self.optimState.learningRate))
-- check that the storage didn't get changed do to an unfortunate getParameters call
assert(self.params:storage() == self.model:parameters()[1]:storage())
timer:reset()
dataTimer:reset()
::continue::
end
return top1Sum / N, top5Sum / N, lossSum / N
end
function Trainer:test(epoch, dataloader)
-- Computes the top-1 and top-5 err on the validation set
local timer = torch.Timer()
local dataTimer = torch.Timer()
local size = dataloader:size()
local nCrops = self.opt.tenCrop and 10 or 1
local top1Sum, top5Sum = 0.0, 0.0
local N = 0
self.model:evaluate()
for n, sample in dataloader:run() do
local dataTime = dataTimer:time().real
max = torch.max(sample.input)
if max <= 0 then
print(" | ignore this sample totally a background volume!")
goto continue
end
-- Copy input and target to the GPU
self:copyInputs(sample)
local batchSize = self.input:size(1)
if batchSize < self.opt.batchSize then
print(" | ignore this batch which size is not enough!")
goto continue
end
local output = self.model:forward(self.input):float()
local loss = self.criterion:forward(self.model.output, self.target)
-- local top1, top5, log = self:computeScore(output, sample.target, nCrops)
local top1, top5 = self:computeScore(output, self.target, nCrops)
top1Sum = top1Sum + top1*batchSize
top5Sum = top5Sum + top5*batchSize
N = N + batchSize
print((' | Test: [%3d][%3d/%3d] Time %.3f Data %.3f Loss %1.8f top1 %7.3f (%7.3f) top5 %7.3f (%7.3f)'):format(
epoch, n, size, timer:time().real, dataTime, loss, top1, top1Sum / N, top5, top5Sum / N) )
timer:reset()
dataTimer:reset()
::continue::
end
self.model:training()
print((' * Finished epoch # %d top1: %7.3f top5: %7.3f\n'):format(
epoch, top1Sum / N, top5Sum / N))
return top1Sum / N, top5Sum / N
end
-- ===================================
-- ========== Compute Score ==========
-- ===================================
--
function Trainer:computeScore(output, target, nCrops)
-- print("========================nCrops====")
-- print(output:size())
--print(Crops)
if nCrops > 1 then
-- Sum over crops
output = output:view(output:size(1) / nCrops, nCrops, output:size(2))
--:exp()
:sum(2):squeeze(2)
end
-- Coputes the top1 and top5 error rate
local batchSize = output:size(1)
local _ , predictions = output:float():sort(2, true) -- descending
-- ================= Ignore Label Area ==========
--
t1pred = predictions:narrow(2, 1, 1)
-- Find which predictions match the target
-- targ = target:long():view(batchSize, 1):expandAs(output)
target_cp = target:clone()
-- targ = target:resize(torch.numel(target),1)
-- print(targ:eq(1):sum())
-- print(targ:eq(1):sum()/batchSize*1.0)
-- 1. calculate the count of ignore label
-- 2. make the ignore label into another value
local sampleCount = batchSize
local ignoreLabelCount = 0
if self.opt.ignore then
ignoreLabelCount = target:eq(self.opt.ignorelabel):sum()
sampleCount = batchSize - ignoreLabelCount
target_cp[target_cp:eq(self.opt.ignorelabel)]= self.opt.nClasses + 1
-- print("27 count: " .. target_cp:eq(27):sum())
end
if self.opt.classweight then
ignoreLabelCount = target:eq(1):sum()
sampleCount = batchSize - ignoreLabelCount
target_cp[target_cp:eq(0)]= self.opt.nClasses + 1
-- print("27 count: " .. target_cp:eq(27):sum())
end
local correct = predictions:eq(
target_cp:long():view(batchSize, 1):expandAs(output))
--print("correct:")
-- print(torch.min(correct:narrow(2, 1, 1)))
-- print(torch.max(correct:narrow(2, 1, 1)))
if self.opt.debug >=1 then
t1corr = correct:narrow(2, 1, 1)
t1label = target[t1corr:eq(1)]
-- print(t1label:size())
-- print(t1label)
targetCount = "D.targ:"
t1predCount = "D.Pred:"
classcount = "D.Cor2:"
info = ""
nclass = self.opt.nClasses
if self.opt.ignore then
-- info = "PredStats: " .. ignoreLabelCount .. "(ignore Label) + " .. sampleCount .. " (normal Label) = " .. batchSize .. " (total map)"
info = "TragetStats: " .. batchSize .. " (total map) = " .. ignoreLabelCount .. " (ignore Label) + " .. sampleCount .. " (normal Label)"
nclass = self.opt.nClasses -1
end
for i=1, nclass do
tmp = t1pred:eq(i):sum()
if tmp >0 then
t1predCount = t1predCount .. "\t" .. i .. ":" .. tmp
end
tmp = target:eq(i):sum()
if tmp >0 then
targetCount = targetCount .. "\t" .. i .. ":" .. tmp
end
if t1label:eq(i):sum()>0 then
tmp = t1label[t1label:eq(i)]:numel()
classcount = classcount .. "\t" .. i .. ":" .. tmp
end
end
log = {targetCount, classcount, t1predCount, info}
print('')
print(' - Classify:\t' .. self.opt.relabelstr)
for i, line in ipairs(log) do
print(' - ' .. line)
end
end
-- Top-1 score
-- local top1 = 1.0 - (correct:narrow(2, 1, 1):sum() / batchSize)
local top1 = 1.0 - (correct:narrow(2, 1, 1):sum() / sampleCount)
-- Top-5 score, if there are at least 5 classes
local len = math.min(5, correct:size(2))
-- local top5 = 1.0 - (correct:narrow(2, 1, len):sum() / batchSize)
local top5 = 1.0 - (correct:narrow(2, 1, len):sum() / sampleCount)
return top1 * 100, top5 * 100
end
local function getCudaTensorType(tensorType)
if tensorType == 'torch.CudaHalfTensor' then
return cutorch.createCudaHostHalfTensor()
elseif tensorType == 'torch.CudaDoubleTensor' then
return cutorch.createCudaHostDoubleTensor()
else
return cutorch.createCudaHostTensor()
end
end
function Trainer:copyInputs(sample)
-- Copies the input to a CUDA tensor, if using 1 GPU, or to pinned memory,
-- if using DataParallelTable. The target is always copied to a CUDA tensor
self.input = self.input or (self.opt.nGPU == 1
and torch[self.opt.tensorType:match('torch.(%a+)')]()
or getCudaTensorType(self.opt.tensorType))
self.target = self.target or (torch.CudaLongTensor and torch.CudaLongTensor())
self.input:resize(sample.input:size()):copy(sample.input)
self.target:resize(sample.target:size()):copy(sample.target)
end
-- function Trainer:copyInputs(sample)
-- -- Copies the input to a CUDA tensor, if using 1 GPU, or to pinned memory,
-- -- if using DataParallelTable. The target is always copied to a CUDA tensor
-- self.input = self.input or (self.opt.nGPU == 1
-- and torch.CudaTensor()
-- or cutorch.createCudaHostTensor())
-- self.target = self.target or (torch.CudaLongTensor and torch.CudaLongTensor()or torch.CudaTensor())
-- self.input:resize(sample.input:size()):copy(sample.input)
-- self.target:resize(sample.target:size()):copy(sample.target)
-- end
function Trainer:learningRate(epoch)
-- Training schedule
local decay = 0
if self.opt.dataset == 'imagenet' then
decay = math.floor((epoch - 1) / 30)
elseif self.opt.dataset == 'emdb' then
decay = epoch >= 150 and 2 or epoch >= 100 and 1 or 0
elseif self.opt.dataset == 'pdb' then
decay = math.floor((epoch - 1) / 30)
elseif self.opt.dataset == 'cifar10' then
decay = epoch >= 225 and 2 or epoch >= 150 and 1 or 0
elseif self.opt.dataset == 'cifar100' then
decay = epoch >= 122 and 2 or epoch >= 81 and 1 or 0
end
return self.opt.LR * math.pow(0.1, decay)
end
return M.Trainer