forked from max-andr/square-attack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathattack.py
338 lines (272 loc) · 16 KB
/
attack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import argparse
import time
import numpy as np
import data
import models
import os
import utils
from datetime import datetime
np.set_printoptions(precision=5, suppress=True)
def p_selection(p_init, it, n_iters):
""" Piece-wise constant schedule for p (the fraction of pixels changed on every iteration). """
it = int(it / n_iters * 10000)
if 10 < it <= 50:
p = p_init / 2
elif 50 < it <= 200:
p = p_init / 4
elif 200 < it <= 500:
p = p_init / 8
elif 500 < it <= 1000:
p = p_init / 16
elif 1000 < it <= 2000:
p = p_init / 32
elif 2000 < it <= 4000:
p = p_init / 64
elif 4000 < it <= 6000:
p = p_init / 128
elif 6000 < it <= 8000:
p = p_init / 256
elif 8000 < it <= 10000:
p = p_init / 512
else:
p = p_init
return p
def pseudo_gaussian_pert_rectangles(x, y):
delta = np.zeros([x, y])
x_c, y_c = x // 2 + 1, y // 2 + 1
counter2 = [x_c - 1, y_c - 1]
for counter in range(0, max(x_c, y_c)):
delta[max(counter2[0], 0):min(counter2[0] + (2 * counter + 1), x),
max(0, counter2[1]):min(counter2[1] + (2 * counter + 1), y)] += 1.0 / (counter + 1) ** 2
counter2[0] -= 1
counter2[1] -= 1
delta /= np.sqrt(np.sum(delta ** 2, keepdims=True))
return delta
def meta_pseudo_gaussian_pert(s):
delta = np.zeros([s, s])
n_subsquares = 2
if n_subsquares == 2:
delta[:s // 2] = pseudo_gaussian_pert_rectangles(s // 2, s)
delta[s // 2:] = pseudo_gaussian_pert_rectangles(s - s // 2, s) * (-1)
delta /= np.sqrt(np.sum(delta ** 2, keepdims=True))
if np.random.rand(1) > 0.5: delta = np.transpose(delta)
elif n_subsquares == 4:
delta[:s // 2, :s // 2] = pseudo_gaussian_pert_rectangles(s // 2, s // 2) * np.random.choice([-1, 1])
delta[s // 2:, :s // 2] = pseudo_gaussian_pert_rectangles(s - s // 2, s // 2) * np.random.choice([-1, 1])
delta[:s // 2, s // 2:] = pseudo_gaussian_pert_rectangles(s // 2, s - s // 2) * np.random.choice([-1, 1])
delta[s // 2:, s // 2:] = pseudo_gaussian_pert_rectangles(s - s // 2, s - s // 2) * np.random.choice([-1, 1])
delta /= np.sqrt(np.sum(delta ** 2, keepdims=True))
return delta
def square_attack_l2(model, x, y, corr_classified, eps, n_iters, p_init, metrics_path, targeted, loss_type):
""" The L2 square attack """
np.random.seed(0)
min_val, max_val = 0, 1
c, h, w = x.shape[1:]
n_features = c * h * w
n_ex_total = x.shape[0]
x, y = x[corr_classified], y[corr_classified]
### initialization
delta_init = np.zeros(x.shape)
s = h // 5
log.print('Initial square side={} for bumps'.format(s))
sp_init = (h - s * 5) // 2
center_h = sp_init + 0
for counter in range(h // s):
center_w = sp_init + 0
for counter2 in range(w // s):
delta_init[:, :, center_h:center_h + s, center_w:center_w + s] += meta_pseudo_gaussian_pert(s).reshape(
[1, 1, s, s]) * np.random.choice([-1, 1], size=[x.shape[0], c, 1, 1])
center_w += s
center_h += s
x_best = np.clip(x + delta_init / np.sqrt(np.sum(delta_init ** 2, axis=(1, 2, 3), keepdims=True)) * eps, 0, 1)
logits = model.predict(x_best)
loss_min = model.loss(y, logits, targeted, loss_type=loss_type)
margin_min = model.loss(y, logits, targeted, loss_type='margin_loss')
n_queries = np.ones(x.shape[0]) # ones because we have already used 1 query
time_start = time.time()
s_init = int(np.sqrt(p_init * n_features / c))
metrics = np.zeros([n_iters, 7])
for i_iter in range(n_iters):
idx_to_fool = (margin_min > 0.0)
print(idx_to_fool)
x_curr, x_best_curr = x[idx_to_fool], x_best[idx_to_fool]
print(x_best_curr.shape)
y_curr, margin_min_curr = y[idx_to_fool], margin_min[idx_to_fool]
loss_min_curr = loss_min[idx_to_fool]
delta_curr = x_best_curr - x_curr
p = p_selection(p_init, i_iter, n_iters)
s = max(int(round(np.sqrt(p * n_features / c))), 3)
if s % 2 == 0:
s += 1
s2 = s + 0
### window_1
center_h = np.random.randint(0, h - s)
center_w = np.random.randint(0, w - s)
new_deltas_mask = np.zeros(x_curr.shape)
new_deltas_mask[:, :, center_h:center_h + s, center_w:center_w + s] = 1.0
### window_2
center_h_2 = np.random.randint(0, h - s2)
center_w_2 = np.random.randint(0, w - s2)
new_deltas_mask_2 = np.zeros(x_curr.shape)
new_deltas_mask_2[:, :, center_h_2:center_h_2 + s2, center_w_2:center_w_2 + s2] = 1.0
norms_window_2 = np.sqrt(
np.sum(delta_curr[:, :, center_h_2:center_h_2 + s2, center_w_2:center_w_2 + s2] ** 2, axis=(-2, -1),
keepdims=True))
### compute total norm available
curr_norms_window = np.sqrt(
np.sum(((x_best_curr - x_curr) * new_deltas_mask) ** 2, axis=(2, 3), keepdims=True))
curr_norms_image = np.sqrt(np.sum((x_best_curr - x_curr) ** 2, axis=(1, 2, 3), keepdims=True))
mask_2 = np.maximum(new_deltas_mask, new_deltas_mask_2)
norms_windows = np.sqrt(np.sum((delta_curr * mask_2) ** 2, axis=(2, 3), keepdims=True))
### create the updates
new_deltas = np.ones([x_curr.shape[0], c, s, s])
new_deltas = new_deltas * meta_pseudo_gaussian_pert(s).reshape([1, 1, s, s])
new_deltas *= np.random.choice([-1, 1], size=[x_curr.shape[0], c, 1, 1])
old_deltas = delta_curr[:, :, center_h:center_h + s, center_w:center_w + s] / (1e-10 + curr_norms_window)
new_deltas += old_deltas
new_deltas = new_deltas / np.sqrt(np.sum(new_deltas ** 2, axis=(2, 3), keepdims=True)) * (
np.maximum(eps ** 2 - curr_norms_image ** 2, 0) / c + norms_windows ** 2) ** 0.5
delta_curr[:, :, center_h_2:center_h_2 + s2, center_w_2:center_w_2 + s2] = 0.0 # set window_2 to 0
delta_curr[:, :, center_h:center_h + s, center_w:center_w + s] = new_deltas + 0 # update window_1
hps_str = 's={}->{}'.format(s_init, s)
x_new = x_curr + delta_curr / np.sqrt(np.sum(delta_curr ** 2, axis=(1, 2, 3), keepdims=True)) * eps
x_new = np.clip(x_new, min_val, max_val)
curr_norms_image = np.sqrt(np.sum((x_new - x_curr) ** 2, axis=(1, 2, 3), keepdims=True))
logits = model.predict(x_new)
loss = model.loss(y_curr, logits, targeted, loss_type=loss_type)
margin = model.loss(y_curr, logits, targeted, loss_type='margin_loss')
idx_improved = loss < loss_min_curr
loss_min[idx_to_fool] = idx_improved * loss + ~idx_improved * loss_min_curr
margin_min[idx_to_fool] = idx_improved * margin + ~idx_improved * margin_min_curr
idx_improved = np.reshape(idx_improved, [-1, *[1] * len(x.shape[:-1])])
x_best[idx_to_fool] = idx_improved * x_new + ~idx_improved * x_best_curr
n_queries[idx_to_fool] += 1
acc = (margin_min > 0.0).sum() / n_ex_total
acc_corr = (margin_min > 0.0).mean()
mean_nq, mean_nq_ae, median_nq, median_nq_ae = np.mean(n_queries), np.mean(
n_queries[margin_min <= 0]), np.median(n_queries), np.median(n_queries[margin_min <= 0])
time_total = time.time() - time_start
log.print(
'{}: acc={:.2%} acc_corr={:.2%} avg#q_ae={:.1f} med#q_ae={:.1f} {}, n_ex={}, {:.0f}s, loss={:.3f}, max_pert={:.1f}, impr={:.0f}'.
format(i_iter + 1, acc, acc_corr, mean_nq_ae, median_nq_ae, hps_str, x.shape[0], time_total,
np.mean(margin_min), np.amax(curr_norms_image), np.sum(idx_improved)))
metrics[i_iter] = [acc, acc_corr, mean_nq, mean_nq_ae, median_nq, margin_min.mean(), time_total]
if (i_iter <= 500 and i_iter % 500) or (i_iter > 100 and i_iter % 500) or i_iter + 1 == n_iters or acc == 0:
np.save(metrics_path, metrics)
if acc == 0:
curr_norms_image = np.sqrt(np.sum((x_best - x) ** 2, axis=(1, 2, 3), keepdims=True))
print('Maximal norm of the perturbations: {:.5f}'.format(np.amax(curr_norms_image)))
break
curr_norms_image = np.sqrt(np.sum((x_best - x) ** 2, axis=(1, 2, 3), keepdims=True))
print('Maximal norm of the perturbations: {:.5f}'.format(np.amax(curr_norms_image)))
return n_queries, x_best
def square_attack_linf(model, x, y, corr_classified, eps, n_iters, p_init, metrics_path, targeted, loss_type):
""" The Linf square attack """
np.random.seed(0) # important to leave it here as well
min_val, max_val = 0, 1 if x.max() <= 1 else 255
c, h, w = x.shape[1:]
n_features = c*h*w
n_ex_total = x.shape[0]
x, y = x[corr_classified], y[corr_classified]
# [c, 1, w], i.e. vertical stripes work best for untargeted attacks
init_delta = np.random.choice([-eps, eps], size=[x.shape[0], c, 1, w])
x_best = np.clip(x + init_delta, min_val, max_val)
logits = model.predict(x_best)
loss_min = model.loss(y, logits, targeted, loss_type=loss_type)
margin_min = model.loss(y, logits, targeted, loss_type='margin_loss')
n_queries = np.ones(x.shape[0]) # ones because we have already used 1 query
time_start = time.time()
metrics = np.zeros([n_iters, 7])
for i_iter in range(n_iters - 1):
idx_to_fool = margin_min > 0
x_curr, x_best_curr, y_curr = x[idx_to_fool], x_best[idx_to_fool], y[idx_to_fool]
loss_min_curr, margin_min_curr = loss_min[idx_to_fool], margin_min[idx_to_fool]
deltas = x_best_curr - x_curr
p = p_selection(p_init, i_iter, n_iters)
for i_img in range(x_best_curr.shape[0]):
s = int(round(np.sqrt(p * n_features / c)))
s = min(max(s, 1), h-1) # at least c x 1 x 1 window is taken and at most c x h-1 x h-1
center_h = np.random.randint(0, h - s)
center_w = np.random.randint(0, w - s)
x_curr_window = x_curr[i_img, :, center_h:center_h+s, center_w:center_w+s]
x_best_curr_window = x_best_curr[i_img, :, center_h:center_h+s, center_w:center_w+s]
# prevent trying out a delta if it doesn't change x_curr (e.g. an overlapping patch)
while np.sum(np.abs(np.clip(x_curr_window + deltas[i_img, :, center_h:center_h+s, center_w:center_w+s], min_val, max_val) - x_best_curr_window) < 10**-7) == c*s*s:
deltas[i_img, :, center_h:center_h+s, center_w:center_w+s] = np.random.choice([-eps, eps], size=[c, 1, 1])
x_new = np.clip(x_curr + deltas, min_val, max_val)
logits = model.predict(x_new)
loss = model.loss(y_curr, logits, targeted, loss_type=loss_type)
margin = model.loss(y_curr, logits, targeted, loss_type='margin_loss')
idx_improved = loss < loss_min_curr
loss_min[idx_to_fool] = idx_improved * loss + ~idx_improved * loss_min_curr
margin_min[idx_to_fool] = idx_improved * margin + ~idx_improved * margin_min_curr
idx_improved = np.reshape(idx_improved, [-1, *[1]*len(x.shape[:-1])])
x_best[idx_to_fool] = idx_improved * x_new + ~idx_improved * x_best_curr
n_queries[idx_to_fool] += 1
acc = (margin_min > 0.0).sum() / n_ex_total
acc_corr = (margin_min > 0.0).mean()
mean_nq, mean_nq_ae, median_nq_ae = np.mean(n_queries), np.mean(n_queries[margin_min <= 0]), np.median(n_queries[margin_min <= 0])
avg_margin_min = np.mean(margin_min)
time_total = time.time() - time_start
log.print('{}: acc={:.2%} acc_corr={:.2%} avg#q_ae={:.2f} med#q={:.1f}, avg_margin={:.2f} (n_ex={}, eps={:.3f}, {:.2f}s)'.
format(i_iter+1, acc, acc_corr, mean_nq_ae, median_nq_ae, avg_margin_min, x.shape[0], eps, time_total))
metrics[i_iter] = [acc, acc_corr, mean_nq, mean_nq_ae, median_nq_ae, margin_min.mean(), time_total]
if (i_iter <= 500 and i_iter % 20 == 0) or (i_iter > 100 and i_iter % 50 == 0) or i_iter + 1 == n_iters or acc == 0:
np.save(metrics_path, metrics)
if acc == 0:
break
return n_queries, x_best
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Define hyperparameters.')
parser.add_argument('--model', type=str, default='gvision', choices=models.all_model_names, help='Model name.')
parser.add_argument('--attack', type=str, default='square_linf', choices=['square_linf', 'square_l2'], help='Attack.')
parser.add_argument('--exp_folder', type=str, default='exps', help='Experiment folder to store all output.')
parser.add_argument('--gpu', type=str, default='1', help='GPU number. Multiple GPUs are possible for PT models.')
parser.add_argument('--n_ex', type=int, default=10000, help='Number of test ex to test on.')
parser.add_argument('--p', type=float, default=0.3,
help='Probability of changing a coordinate. Note: check the paper for the best values. '
'Linf standard: 0.05, L2 standard: 0.1. But robust models require higher p.')
parser.add_argument('--eps', type=float, default=0.05, help='Radius of the Lp ball.')
parser.add_argument('--n_iter', type=int, default=10000)
parser.add_argument('--targeted', action='store_true', help='Targeted or untargeted attack.')
args = parser.parse_args()
args.loss = 'margin_loss' if not args.targeted else 'cross_entropy'
# os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
dataset = 'mnist' if 'mnist' in args.model else 'cifar10' if 'cifar10' in args.model else 'imagenet'
timestamp = str(datetime.now())[:-7]
hps_str = '{} model={} dataset={} attack={} n_ex={} eps={} p={} n_iter={}'.format(
timestamp, args.model, dataset, args.attack, args.n_ex, args.eps, args.p, args.n_iter)
args.eps = args.eps / 255.0 if dataset == 'imagenet' else args.eps # for mnist and cifar10 we leave as it is
batch_size = data.bs_dict[dataset]
model_type = 'pt' if 'pt_' in args.model else 'tf'
n_cls = 1000 if dataset == 'imagenet' else 10
gpu_memory = 0.5 if dataset == 'mnist' and args.n_ex > 1000 else 0.15 if dataset == 'mnist' else 0.99
log_path = '{}/{}.log'.format(args.exp_folder, hps_str)
metrics_path = '{}/{}.metrics'.format(args.exp_folder, hps_str)
log = utils.Logger(log_path)
log.print('All hps: {}'.format(hps_str))
if args.model != 'pt_inception':
x_test, y_test = data.datasets_dict[dataset](args.n_ex)
else: # exception for inception net on imagenet -- 299x299 images instead of 224x224
x_test, y_test = data.datasets_dict[dataset](args.n_ex, size=299)
x_test, y_test = x_test[:args.n_ex], y_test[:args.n_ex]
if args.model == 'pt_post_avg_cifar10':
x_test /= 255.0
args.eps = args.eps / 255.0
if args.model == "gvision":
labelset = ["cat"]
model = models.GVisionModel(exp_name=f"eps={args.eps}_p={args.p}_attack={args.attack}_niters={args.n_iter}", correct_labelset=labelset, save_location="l2_cat")
y_test = np.array([0])
else:
models_class_dict = {'tf': models.ModelTF, 'pt': models.ModelPT}
model = models_class_dict[model_type](args.model, batch_size, gpu_memory)
logits_clean = model.predict(x_test)
corr_classified = logits_clean.argmax(1) == y_test
# important to check that the model was restored correctly and the clean accuracy is high
log.print('Clean accuracy: {:.2%}'.format(np.mean(corr_classified)))
square_attack = square_attack_linf if args.attack == 'square_linf' else square_attack_l2
y_target = utils.random_classes_except_current(y_test, n_cls) if args.targeted else y_test
y_target_onehot = utils.dense_to_onehot(y_target, n_cls=n_cls)
# Note: we count the queries only across correctly classified images
n_queries, x_adv = square_attack(model, x_test, y_target_onehot, corr_classified, args.eps, args.n_iter,
args.p, metrics_path, args.targeted, args.loss)