-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathassociation_rules_calculator.py
129 lines (89 loc) · 3.34 KB
/
association_rules_calculator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import os
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "prs_project.settings")
import django
django.setup()
from collections import defaultdict
from itertools import combinations
from datetime import datetime
from collector.models import Log
from recommender.models import SeededRecs
def build_association_rules():
data = retrieve_buy_events()
data = generate_transactions(data)
data = calculate_support_confidence(data, 0.01)
save_rules(data)
def retrieve_buy_events():
data = Log.objects.filter(event='buy').values()
return data
def generate_transactions(data):
transactions = dict()
for transaction_item in data:
transaction_id = transaction_item["session_id"]
if transaction_id not in transactions:
transactions[transaction_id] = []
transactions[transaction_id].append(transaction_item["content_id"])
return transactions
def calculate_support_confidence(transactions, min_sup=0.01):
N = len(transactions)
print(N)
one_itemsets = calculate_itemsets_one(transactions, min_sup)
print(one_itemsets)
two_itemsets = calculate_itemsets_two(transactions, one_itemsets)
rules = calculate_association_rules(one_itemsets, two_itemsets, N)
print(rules)
return sorted(rules)
def calculate_itemsets_one(transactions, min_sup=0.01):
N = len(transactions)
temp = defaultdict(int)
one_itemsets = dict()
for key, items in transactions.items():
for item in items:
inx = frozenset({item})
temp[inx] += 1
print("temp:")
print(temp)
# remove all items that is not supported.
for key, itemset in temp.items():
print(f"{key}, {itemset}, {min_sup}, {min_sup * N}")
if itemset > min_sup * N:
one_itemsets[key] = itemset
return one_itemsets
def calculate_itemsets_two(transactions, one_itemsets):
two_itemsets = defaultdict(int)
for key, items in transactions.items():
items = list(set(items)) # remove duplications
if (len(items) > 2):
for perm in combinations(items, 2):
if has_support(perm, one_itemsets):
two_itemsets[frozenset(perm)] += 1
elif len(items) == 2:
if has_support(items, one_itemsets):
two_itemsets[frozenset(items)] += 1
return two_itemsets
def calculate_association_rules(one_itemsets, two_itemsets, N):
timestamp = datetime.now()
rules = []
for source, source_freq in one_itemsets.items():
for key, group_freq in two_itemsets.items():
if source.issubset(key):
target = key.difference(source)
support = group_freq / N
confidence = group_freq / source_freq
rules.append((timestamp, next(iter(source)), next(iter(target)),
confidence, support))
return rules
def has_support(perm, one_itemsets):
return frozenset({perm[0]}) in one_itemsets and \
frozenset({perm[1]}) in one_itemsets
def save_rules(rules):
for rule in rules:
SeededRecs(
created=rule[0],
source=str(rule[1]),
target=str(rule[2]),
support=rule[3],
confidence=rule[4]
).save()
if __name__ == '__main__':
print("Calculating association rules...")
build_association_rules()