forked from apache/datafusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_date.rs
120 lines (96 loc) · 3.98 KB
/
make_date.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use std::sync::Arc;
use datafusion::arrow::array::Int32Array;
use datafusion::arrow::datatypes::{DataType, Field, Schema};
use datafusion::arrow::record_batch::RecordBatch;
use datafusion::error::Result;
use datafusion::prelude::*;
use datafusion_common::assert_contains;
/// This example demonstrates how to use the make_date
/// function in the DataFrame API as well as via sql.
#[tokio::main]
async fn main() -> Result<()> {
// define a schema.
let schema = Arc::new(Schema::new(vec![
Field::new("y", DataType::Int32, false),
Field::new("m", DataType::Int32, false),
Field::new("d", DataType::Int32, false),
]));
// define data.
let batch = RecordBatch::try_new(
schema,
vec![
Arc::new(Int32Array::from(vec![2020, 2021, 2022, 2023, 2024])),
Arc::new(Int32Array::from(vec![1, 2, 3, 4, 5])),
Arc::new(Int32Array::from(vec![15, 16, 17, 18, 19])),
],
)?;
// declare a new context. In spark API, this corresponds to a new spark SQLsession
let ctx = SessionContext::new();
// declare a table in memory. In spark API, this corresponds to createDataFrame(...).
ctx.register_batch("t", batch)?;
let df = ctx.table("t").await?;
// use make_date function to convert col 'y', 'm' & 'd' to a date
let df = df.with_column("a", make_date(col("y"), col("m"), col("d")))?;
// use make_date function to convert col 'y' & 'm' with a static day to a date
let df = df.with_column("b", make_date(col("y"), col("m"), lit(22)))?;
let df = df.select_columns(&["a", "b"])?;
// print the results
df.show().await?;
// use sql to convert col 'y', 'm' & 'd' to a date
let df = ctx.sql("select make_date(y, m, d) from t").await?;
// print the results
df.show().await?;
// use sql to convert col 'y' & 'm' with a static string day to a date
let df = ctx.sql("select make_date(y, m, '22') from t").await?;
// print the results
df.show().await?;
// math expressions work
let df = ctx.sql("select make_date(y + 1, m, d) from t").await?;
// print the results
df.show().await?;
// you can cast to supported types (int, bigint, varchar) if required
let df = ctx
.sql("select make_date(2024::bigint, 01::bigint, 27::varchar(3))")
.await?;
// print the results
df.show().await?;
// arrow casts also work
let df = ctx
.sql("select make_date(arrow_cast(2024, 'Int64'), arrow_cast(1, 'Int64'), arrow_cast(27, 'Int64'))")
.await?;
// print the results
df.show().await?;
// invalid column values will result in an error
let result = ctx
.sql("select make_date(2024, null, 23)")
.await?
.collect()
.await;
let expected = "Execution error: Unable to parse date from null/empty value";
assert_contains!(result.unwrap_err().to_string(), expected);
// invalid date values will also result in an error
let result = ctx
.sql("select make_date(2024, 01, 32)")
.await?
.collect()
.await;
let expected = "Execution error: Unable to parse date from 2024, 1, 32";
assert_contains!(result.unwrap_err().to_string(), expected);
Ok(())
}