forked from apache/datafusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadvanced_udwf.rs
236 lines (210 loc) · 7.88 KB
/
advanced_udwf.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use datafusion::{arrow::datatypes::DataType, logical_expr::Volatility};
use std::any::Any;
use arrow::{
array::{ArrayRef, AsArray, Float64Array},
datatypes::Float64Type,
};
use arrow_schema::Field;
use datafusion::error::Result;
use datafusion::prelude::*;
use datafusion_common::ScalarValue;
use datafusion_expr::function::WindowUDFFieldArgs;
use datafusion_expr::{
PartitionEvaluator, Signature, WindowFrame, WindowUDF, WindowUDFImpl,
};
use datafusion_functions_window_common::partition::PartitionEvaluatorArgs;
/// This example shows how to use the full WindowUDFImpl API to implement a user
/// defined window function. As in the `simple_udwf.rs` example, this struct implements
/// a function `partition_evaluator` that returns the `MyPartitionEvaluator` instance.
///
/// To do so, we must implement the `WindowUDFImpl` trait.
#[derive(Debug, Clone)]
struct SmoothItUdf {
signature: Signature,
}
impl SmoothItUdf {
/// Create a new instance of the SmoothItUdf struct
fn new() -> Self {
Self {
signature: Signature::exact(
// this function will always take one arguments of type f64
vec![DataType::Float64],
// this function is deterministic and will always return the same
// result for the same input
Volatility::Immutable,
),
}
}
}
impl WindowUDFImpl for SmoothItUdf {
/// We implement as_any so that we can downcast the WindowUDFImpl trait object
fn as_any(&self) -> &dyn Any {
self
}
/// Return the name of this function
fn name(&self) -> &str {
"smooth_it"
}
/// Return the "signature" of this function -- namely that types of arguments it will take
fn signature(&self) -> &Signature {
&self.signature
}
/// Create a `PartitionEvaluator` to evaluate this function on a new
/// partition.
fn partition_evaluator(
&self,
_partition_evaluator_args: PartitionEvaluatorArgs,
) -> Result<Box<dyn PartitionEvaluator>> {
Ok(Box::new(MyPartitionEvaluator::new()))
}
fn field(&self, field_args: WindowUDFFieldArgs) -> Result<Field> {
Ok(Field::new(field_args.name(), DataType::Float64, true))
}
}
/// This implements the lowest level evaluation for a window function
///
/// It handles calculating the value of the window function for each
/// distinct values of `PARTITION BY` (each car type in our example)
#[derive(Clone, Debug)]
struct MyPartitionEvaluator {}
impl MyPartitionEvaluator {
fn new() -> Self {
Self {}
}
}
/// Different evaluation methods are called depending on the various
/// settings of WindowUDF. This example uses the simplest and most
/// general, `evaluate`. See `PartitionEvaluator` for the other more
/// advanced uses.
impl PartitionEvaluator for MyPartitionEvaluator {
/// Tell DataFusion the window function varies based on the value
/// of the window frame.
fn uses_window_frame(&self) -> bool {
true
}
/// This function is called once per input row.
///
/// `range`specifies which indexes of `values` should be
/// considered for the calculation.
///
/// Note this is the SLOWEST, but simplest, way to evaluate a
/// window function. It is much faster to implement
/// evaluate_all or evaluate_all_with_rank, if possible
fn evaluate(
&mut self,
values: &[ArrayRef],
range: &std::ops::Range<usize>,
) -> Result<ScalarValue> {
// Again, the input argument is an array of floating
// point numbers to calculate a moving average
let arr: &Float64Array = values[0].as_ref().as_primitive::<Float64Type>();
let range_len = range.end - range.start;
// our smoothing function will average all the values in the
let output = if range_len > 0 {
let sum: f64 = arr.values().iter().skip(range.start).take(range_len).sum();
Some(sum / range_len as f64)
} else {
None
};
Ok(ScalarValue::Float64(output))
}
}
// create local execution context with `cars.csv` registered as a table named `cars`
async fn create_context() -> Result<SessionContext> {
// declare a new context. In spark API, this corresponds to a new spark SQL session
let ctx = SessionContext::new();
// declare a table in memory. In spark API, this corresponds to createDataFrame(...).
println!("pwd: {}", std::env::current_dir().unwrap().display());
let csv_path = "../../datafusion/core/tests/data/cars.csv".to_string();
let read_options = CsvReadOptions::default().has_header(true);
ctx.register_csv("cars", &csv_path, read_options).await?;
Ok(ctx)
}
#[tokio::main]
async fn main() -> Result<()> {
let ctx = create_context().await?;
let smooth_it = WindowUDF::from(SmoothItUdf::new());
ctx.register_udwf(smooth_it.clone());
// Use SQL to run the new window function
let df = ctx.sql("SELECT * from cars").await?;
// print the results
df.show().await?;
// Use SQL to run the new window function:
//
// `PARTITION BY car`:each distinct value of car (red, and green)
// should be treated as a separate partition (and will result in
// creating a new `PartitionEvaluator`)
//
// `ORDER BY time`: within each partition ('green' or 'red') the
// rows will be ordered by the value in the `time` column
//
// `evaluate_inside_range` is invoked with a window defined by the
// SQL. In this case:
//
// The first invocation will be passed row 0, the first row in the
// partition.
//
// The second invocation will be passed rows 0 and 1, the first
// two rows in the partition.
//
// etc.
let df = ctx
.sql(
"SELECT \
car, \
speed, \
smooth_it(speed) OVER (PARTITION BY car ORDER BY time) AS smooth_speed,\
time \
from cars \
ORDER BY \
car",
)
.await?;
// print the results
df.show().await?;
// this time, call the new widow function with an explicit
// window so evaluate will be invoked with each window.
//
// `ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING`: each invocation
// sees at most 3 rows: the row before, the current row, and the 1
// row afterward.
let df = ctx.sql(
"SELECT \
car, \
speed, \
smooth_it(speed) OVER (PARTITION BY car ORDER BY time ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS smooth_speed,\
time \
from cars \
ORDER BY \
car",
).await?;
// print the results
df.show().await?;
// Now, run the function using the DataFrame API:
let window_expr = smooth_it
.call(vec![col("speed")]) // smooth_it(speed)
.partition_by(vec![col("car")]) // PARTITION BY car
.order_by(vec![col("time").sort(true, true)]) // ORDER BY time ASC
.window_frame(WindowFrame::new(None))
.build()?;
let df = ctx.table("cars").await?.window(vec![window_expr])?;
// print the results
df.show().await?;
Ok(())
}