forked from apache/datafusion-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathq20_potential_part_promotion.py
99 lines (79 loc) · 3.55 KB
/
q20_potential_part_promotion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
TPC-H Problem Statement Query 20:
The Potential Part Promotion query identifies suppliers who have an excess of a given part
available; an excess is defined to be more than 50% of the parts like the given part that the
supplier shipped in a given year for a given nation. Only parts whose names share a certain naming
convention are considered.
The above problem statement text is copyrighted by the Transaction Processing Performance Council
as part of their TPC Benchmark H Specification revision 2.18.0.
"""
from datetime import datetime
import pyarrow as pa
from datafusion import SessionContext, col, lit, functions as F
from util import get_data_path
COLOR_OF_INTEREST = "forest"
DATE_OF_INTEREST = "1994-01-01"
NATION_OF_INTEREST = "CANADA"
# Load the dataframes we need
ctx = SessionContext()
df_part = ctx.read_parquet(get_data_path("part.parquet")).select("p_partkey", "p_name")
df_lineitem = ctx.read_parquet(get_data_path("lineitem.parquet")).select(
"l_shipdate", "l_partkey", "l_suppkey", "l_quantity"
)
df_partsupp = ctx.read_parquet(get_data_path("partsupp.parquet")).select(
"ps_partkey", "ps_suppkey", "ps_availqty"
)
df_supplier = ctx.read_parquet(get_data_path("supplier.parquet")).select(
"s_suppkey", "s_address", "s_name", "s_nationkey"
)
df_nation = ctx.read_parquet(get_data_path("nation.parquet")).select(
"n_nationkey", "n_name"
)
date = datetime.strptime(DATE_OF_INTEREST, "%Y-%m-%d").date()
interval = pa.scalar((0, 365, 0), type=pa.month_day_nano_interval())
# Filter down dataframes
df_nation = df_nation.filter(col("n_name") == lit(NATION_OF_INTEREST))
df_part = df_part.filter(
F.substring(col("p_name"), lit(0), lit(len(COLOR_OF_INTEREST) + 1))
== lit(COLOR_OF_INTEREST)
)
df = df_lineitem.filter(col("l_shipdate") >= lit(date)).filter(
col("l_shipdate") < lit(date) + lit(interval)
)
# This will filter down the line items to the parts of interest
df = df.join(df_part, left_on="l_partkey", right_on="p_partkey", how="inner")
# Compute the total sold and limit ourselves to individual supplier/part combinations
df = df.aggregate(
[col("l_partkey"), col("l_suppkey")], [F.sum(col("l_quantity")).alias("total_sold")]
)
df = df.join(
df_partsupp,
left_on=["l_partkey", "l_suppkey"],
right_on=["ps_partkey", "ps_suppkey"],
how="inner",
)
# Find cases of excess quantity
df.filter(col("ps_availqty") > lit(0.5) * col("total_sold"))
# We could do these joins earlier, but now limit to the nation of interest suppliers
df = df.join(df_supplier, left_on=["ps_suppkey"], right_on=["s_suppkey"], how="inner")
df = df.join(df_nation, left_on=["s_nationkey"], right_on=["n_nationkey"], how="inner")
# Restrict to the requested data per the problem statement
df = df.select("s_name", "s_address").distinct()
df = df.sort(col("s_name").sort())
df.show()