From 0c5d235ad42013009b7425311aca192dc8180e29 Mon Sep 17 00:00:00 2001 From: Tom Gustafsson Date: Sat, 26 Oct 2024 13:56:52 +0300 Subject: [PATCH] remove doctests --- docs/extended.rst | 46 +++++++++++++++++++++++----------------------- 1 file changed, 23 insertions(+), 23 deletions(-) diff --git a/docs/extended.rst b/docs/extended.rst index 7caf7711..c280cd22 100644 --- a/docs/extended.rst +++ b/docs/extended.rst @@ -48,9 +48,9 @@ This is easy enough to draw in ``matplotlib``. The first row in the points array contains the x locations of each point and the second row contains the y locations. -.. doctest:: +.. sourcecode:: - >>> plt.plot(mesh.p[0], mesh.p[1], 'ok') # doctest: +SKIP + >>> plt.plot(mesh.p[0], mesh.p[1], 'ok') .. plot:: @@ -63,13 +63,13 @@ together to form triangles. Each column specifes the indexes of the points that defined the vertexes of the triangle. We can add these lines to the plot. -.. doctest:: +.. sourcecode:: - >>> plt.plot(mesh.p[0], mesh.p[1], 'ok') + >>> plt.plot(mesh.p[0], mesh.p[1], 'ok') # doctest: +SKIP >>> for t in mesh.t.T: # transpose to iterate over columns - >>> plt.plot(mesh.p[0,[t[0],t[1]]], mesh.p[1,[t[0],t[1]]], 'k') # from vertex 0 to 1 - >>> plt.plot(mesh.p[0,[t[1],t[2]]], mesh.p[1,[t[1],t[2]]], 'k') # from vertex 1 to 2 - >>> plt.plot(mesh.p[0,[t[2],t[0]]], mesh.p[1,[t[2],t[0]]], 'k') # from vertex 2 back to 0 + ... plt.plot(mesh.p[0,[t[0],t[1]]], mesh.p[1,[t[0],t[1]]], 'k') # from vertex 0 to 1 + ... plt.plot(mesh.p[0,[t[1],t[2]]], mesh.p[1,[t[1],t[2]]], 'k') # from vertex 1 to 2 + ... plt.plot(mesh.p[0,[t[2],t[0]]], mesh.p[1,[t[2],t[0]]], 'k') # from vertex 2 back to 0 .. plot:: @@ -87,7 +87,7 @@ as translate it or map it into different coordinates. It also has some basic visualization functions to make drawing the mesh on an ``matplotlib`` axis easier. -.. doctest:: +.. sourcecode:: >>> import skfem.visuals.matplotlib >>> mesh = skfem.MeshTri().refined(1) @@ -149,7 +149,7 @@ this will always be equal to the number of nodes in the mesh. However, this is in general not true, so to get a ``numpy`` array of the correct length and initialized to zeros, we will use our basis object. -.. doctest:: +.. sourcecode:: >>> fe_approximation = basis_p1.zeros() @@ -166,7 +166,7 @@ helper function from ``skfem`` to visualize the functions we construct. Later we'll explore other ways to interrogate and visualize functions we've represented in our finite element space. -.. doctest:: +.. sourcecode:: >>> fe_approximation[:] = 1 # a function that is 1 everywhere; [:] means "all dofs" >>> plt.subplots(figsize=(6,5)) @@ -202,7 +202,7 @@ triangles "cells"/"elements". In this context, "cell"/"element" is purely geomet and should not be confused with the "finite element" which includes a concept of polynomial degree.) -.. doctest:: +.. sourcecode:: >>> def is_on_left_edge(x): >>> return x[0] < 0.1 @@ -239,7 +239,7 @@ make the code more compact. In general though, lambda functions should only be used in trivial circumstances. The verbose naming above is more descriptive and readable. -.. doctest:: +.. sourcecode:: >>> dof_subset_right_edge = basis_p1.get_dofs(facets=lambda x: x[1] > 0.9) >>> fe_approximation[dof_subset_right_edge] = 2 @@ -272,7 +272,7 @@ more descriptive and readable. In a directly analogous manner, we can specify values over entire elements instead of just edges. -.. doctest:: +.. sourcecode:: >>> # reset the function to be 1 everywhere >>> fe_approximation[:] = 1 @@ -327,7 +327,7 @@ using. Note the use of lambda here to supply most of the arguments to our trial function while still leaving x available as an argument for ``get_dofs()``. -.. doctest:: +.. sourcecode:: >>> def plot_query_points(x, ax, style, label): >>> ax.plot(x[0], x[1], style, label=label) @@ -367,7 +367,7 @@ red dots on the vertical pair of facets in the center, we should write as follows. (Later we will show more robust and precise ways of labelling facets and elements during mesh construction.) -.. doctest:: +.. sourcecode:: >>> dof_subset_vertical_centerline = basis_p1.get_dofs(facets=lambda x: np.isclose(x[0], 0.5)) >>> fe_approximation[:] = 2 @@ -414,7 +414,7 @@ function into the finite element space. The corresponding Python function must accept a single argument of point vectors and return an array of function values at those points. -.. doctest:: +.. sourcecode:: >>> def f(x): >>> return 4 * abs(x[1] - 0.5) @@ -477,7 +477,7 @@ to distinguish between "local" coordinates and "global" coordinates. In this triangulation we've been working in, the local, or reference, triangle is on with vertexes and (0, 0), (1, 0), and (0, 1). -.. doctest:: +.. sourcecode:: >>> plt.subplots(figsize=(5,5)) >>> plt.plot([0,1,0,0], [0,0,1,0], 'k') @@ -496,7 +496,7 @@ quadrature points used are available via the basis object we constructed previously, so we can plot their locations on the reference triangle. -.. doctest:: +.. sourcecode:: >>> plt.subplots(figsize=(5,5)) >>> plt.plot([0,1,0,0], [0,0,1,0], 'k') @@ -522,7 +522,7 @@ reference triangle. We can get a global visualization of the quadrature points by reverse mapping the local coordinates to each of the triangles in our mesh. -.. doctest:: +.. sourcecode:: >>> global_points = basis_p1.mapping.F(points) >>> plt.subplots(figsize=(5,5)) @@ -549,7 +549,7 @@ mapping the local coordinates to each of the triangles in our mesh. The ``global_points`` array is organized as (coordinate, element_index, quadrature_index): -.. doctest:: +.. sourcecode:: >>> global_points.shape # 2 dimensional, 8 elements, 3 points/element (2, 8, 3) @@ -559,7 +559,7 @@ quadrature points with the values of a (projected) function sampled at those locations. To do this, we'll use the ``interpolate`` method of our basis object on a function projected into finite element space. -.. doctest:: +.. sourcecode:: >>> def f(x): >>> return x[0] + x[1] @@ -621,7 +621,7 @@ ensure the basis sets share a common set of quadrature points, and that there are enough quadrature points to perform exact integration of the highest order basis set. -.. doctest:: +.. sourcecode:: >>> basis_p0 = basis_p1.with_element(skfem.ElementTriP0()) @@ -631,7 +631,7 @@ has fewer degrees-of-freedom than a P1 basis constructed on the same mesh. Specifically, the P0 basis will have a degree-of-freedom for each cell/element in the mesh. -.. doctest:: +.. sourcecode:: >>> print(f'{basis_p1.zeros().shape[0]} dofs in P1 == {mesh.p.shape[1]} nodes in the mesh') >>> print(f'{basis_p0.zeros().shape[0]} dofs in P0 == {mesh.t.shape[1]} elements in the mesh')