forked from tbmoon/facenet
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval_metrics.py
122 lines (97 loc) · 4.84 KB
/
eval_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import numpy as np
from scipy import interpolate
from sklearn.model_selection import KFold
def evaluate(distances, labels, nrof_folds=10):
# Calculate evaluation metrics
thresholds = np.arange(0.3, 5, 0.1)
tpr, fpr, accuracy = calculate_roc(thresholds, distances,
labels, nrof_folds=nrof_folds)
thresholds = np.arange(0, 30, 0.001)
val, val_std, far = calculate_val(thresholds, distances,
labels, 1e-3, nrof_folds=nrof_folds)
return tpr, fpr, accuracy, val, val_std, far
def calculate_roc(thresholds, distances, labels, nrof_folds=10):
nrof_pairs = min(len(labels), len(distances))
nrof_thresholds = len(thresholds)
k_fold = KFold(n_splits=nrof_folds, shuffle=False)
tprs = np.zeros((nrof_folds, nrof_thresholds))
fprs = np.zeros((nrof_folds, nrof_thresholds))
accuracy = np.zeros((nrof_folds))
indices = np.arange(nrof_pairs)
for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)):
# Find the best threshold for the fold
acc_train = np.zeros((nrof_thresholds))
for threshold_idx, threshold in enumerate(thresholds):
_, _, acc_train[threshold_idx] = calculate_accuracy(threshold, distances[train_set], labels[train_set])
best_threshold_index = np.argmax(acc_train)
for threshold_idx, threshold in enumerate(thresholds):
tprs[fold_idx, threshold_idx], fprs[fold_idx, threshold_idx], _ = calculate_accuracy(threshold,
distances[test_set],
labels[test_set])
_, _, accuracy[fold_idx] = calculate_accuracy(thresholds[best_threshold_index], distances[test_set],
labels[test_set])
tpr = np.mean(tprs, 0)
fpr = np.mean(fprs, 0)
return tpr, fpr, accuracy
def calculate_accuracy(threshold, dist, actual_issame):
predict_issame = np.less(dist, threshold)
tp = np.sum(np.logical_and(predict_issame, actual_issame))
fp = np.sum(np.logical_and(predict_issame, np.logical_not(actual_issame)))
tn = np.sum(np.logical_and(np.logical_not(predict_issame), np.logical_not(actual_issame)))
fn = np.sum(np.logical_and(np.logical_not(predict_issame), actual_issame))
tpr = 0 if (tp + fn == 0) else float(tp) / float(tp + fn)
fpr = 0 if (fp + tn == 0) else float(fp) / float(fp + tn)
acc = float(tp + tn) / dist.size
return tpr, fpr, acc
def calculate_val(thresholds, distances, labels, far_target=1e-3, nrof_folds=10):
nrof_pairs = min(len(labels), len(distances))
nrof_thresholds = len(thresholds)
k_fold = KFold(n_splits=nrof_folds, shuffle=False)
val = np.zeros(nrof_folds)
far = np.zeros(nrof_folds)
indices = np.arange(nrof_pairs)
for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)):
# Find the threshold that gives FAR = far_target
far_train = np.zeros(nrof_thresholds)
for threshold_idx, threshold in enumerate(thresholds):
_, far_train[threshold_idx] = calculate_val_far(threshold, distances[train_set], labels[train_set])
if np.max(far_train) >= far_target:
f = interpolate.interp1d(far_train, thresholds, kind='slinear')
threshold = f(far_target)
else:
threshold = 0.0
val[fold_idx], far[fold_idx] = calculate_val_far(threshold, distances[test_set], labels[test_set])
val_mean = np.mean(val)
far_mean = np.mean(far)
val_std = np.std(val)
return val_mean, val_std, far_mean
def calculate_val_far(threshold, dist, actual_issame):
predict_issame = np.less(dist, threshold)
true_accept = np.sum(np.logical_and(predict_issame, actual_issame))
false_accept = np.sum(np.logical_and(predict_issame, np.logical_not(actual_issame)))
n_same = np.sum(actual_issame)
n_diff = np.sum(np.logical_not(actual_issame))
if n_diff == 0:
n_diff = 1
if n_same == 0:
return 0, 0
val = float(true_accept) / float(n_same)
far = float(false_accept) / float(n_diff)
return val, far
def plot_roc(fpr, tpr, figure_name="roc.png"):
import matplotlib.pyplot as plt
plt.switch_backend('Agg')
from sklearn.metrics import auc
roc_auc = auc(fpr, tpr)
fig = plt.figure()
lw = 2
plt.plot(fpr, tpr, color='#16a085',
lw=lw, label='ROC curve (area = %0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1], color='#2c3e50', lw=lw, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic')
plt.legend(loc="lower right", frameon=False)
fig.savefig(figure_name, dpi=fig.dpi)