-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcmu_hard_actions.py
100 lines (81 loc) · 3.56 KB
/
cmu_hard_actions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import requests
from tqdm import tqdm
from pathlib import Path
import csv
def download_subject_txts():
outdir = './data'
for sub_id in tqdm(range(1, 145)):
txt_url = f'http://mocap.cs.cmu.edu/search.php?subjectnumber={sub_id}' + '&motion=%%%&maincat=%&subcat=%&subtext=yes'
r = requests.get(txt_url, allow_redirects=True)
rows = r.content.decode("utf-8")
with open(f'{outdir}/{sub_id}.txt', 'wt') as file:
file.write(rows)
def is_wanted_subject(anno: str):
anno = anno.lower()
trial_keywords = ["climb", "swing", "dance", "basketball", "soccer", "tai chi", "jump", "recreation",
"football", "salsa", "golf", "kick", "hopscotch", "cartwheels", "acrobatics", "sport", "bending",
"swimming", "rolling", "Jackson", "action walk", "flip", "breakdance"]
for kw in trial_keywords:
if kw.lower() in anno:
return True
return False
def is_wanted_trial(anno: str):
anno = anno.lower()
trial_keywords = ["jump", "dance", 'art', "martial", "acrobatics", "bending", "sport", "punch", "jog",
"swing", "tai chi", "basketball", "cartwheel", "soccer", "climb", "stretch", "gymnastics",
"leap", "spin", "hang", "twirl", "hop", "salsa", "swing", "ball", "kick", "lifting", "run",
"hopscotch"]
for kw in trial_keywords:
if kw in anno:
return True
return False
def run_main():
subjects = []
data_dir = f'./data/cmu_labels'
for path in Path(data_dir).glob('*.txt'):
with open(str(path), 'rt') as file:
rows = file.readlines()
rows = [r.strip() for r in rows]
sub_id = int(path.stem)
sub_lbl = [r for r in rows if 'subject' in r.lower() and "#" in r.lower()]
if len(sub_lbl) != 1:
print(f'bad file: ', path)
continue
rows = [r for r in rows if len(r.split('\t')) >= 5]
trials = []
for r in rows:
parts = r.split('\t')
assert len(parts[0]) and len(parts[-1])
trials.append((parts[0], parts[-1]))
subjects.append((sub_id, sub_lbl[0], trials))
subjects = [sub for sub in subjects if is_wanted_subject(sub[1])]
all_trials = []
for sub in subjects:
all_trials.extend(sub[2])
print(f'total trials = {len(all_trials)}')
with open('data/cmu_action_list.csv', 'w') as file:
writer = csv.writer(file, delimiter='|')
writer.writerows(all_trials)
generate_cmu_csv_action_lists([t[0] for t in all_trials], batch_size=3)
def generate_cmu_csv_action_lists(trial_names, batch_size=10):
n_trials = len(trial_names)
n_batches = n_trials // batch_size
out_dir = '/media/F/projects/moveai/codes/run_data/amass/csv_batches'
cmu_data_dir = '/media/F/projects/moveai/codes/run_data/amass/motion_data/CMU/CMU'
all_files = {path.stem: path for path in Path(cmu_data_dir).rglob('*.npz')}
for i in range(n_batches):
batch = trial_names[i * batch_size: (i + 1) * batch_size]
if batch:
batch = [f'{t_name}_poses' for t_name in batch]
batch_1 = []
for name in batch:
if name not in all_files:
print(f'animation {name} does not exist')
else:
batch_1.append(name)
if batch_1:
with open(f'{out_dir}/batch_{i}.csv', 'w') as file:
writer = csv.writer(file)
writer.writerows(zip(batch_1))
if __name__ == "__main__":
run_main()