forked from PaddlePaddle/FastDeploy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpipeline_stable_diffusion.py
236 lines (211 loc) · 9.93 KB
/
pipeline_stable_diffusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# Copyright 2022 The HuggingFace Inc. team.
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from typing import Callable, List, Optional, Union
import numpy as np
from paddlenlp.transformers import CLIPTokenizer
import fastdeploy as fd
from scheduling_utils import PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, EulerAncestralDiscreteScheduler
import PIL
from PIL import Image
import logging
class StableDiffusionFastDeployPipeline(object):
vae_decoder_runtime: fd.Runtime
text_encoder_runtime: fd.Runtime
tokenizer: CLIPTokenizer
unet_runtime: fd.Runtime
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler,
EulerAncestralDiscreteScheduler]
def __init__(self,
vae_decoder_runtime: fd.Runtime,
text_encoder_runtime: fd.Runtime,
tokenizer: CLIPTokenizer,
unet_runtime: fd.Runtime,
scheduler: Union[DDIMScheduler, PNDMScheduler,
LMSDiscreteScheduler]):
self.vae_decoder_runtime = vae_decoder_runtime
self.text_encoder_runtime = text_encoder_runtime
self.unet_runtime = unet_runtime
self.scheduler = scheduler
self.tokenizer = tokenizer
def __call__(
self,
prompt: Union[str, List[str]],
height: Optional[int]=512,
width: Optional[int]=512,
num_inference_steps: Optional[int]=50,
guidance_scale: Optional[float]=7.5,
negative_prompt: Optional[Union[str, List[str]]]=None,
num_images_per_prompt: Optional[int]=1,
eta: Optional[float]=0.0,
generator: Optional[np.random.RandomState]=None,
latents: Optional[np.ndarray]=None,
output_type: Optional[str]="pil",
return_dict: bool=True,
callback: Optional[Callable[[int, int, np.ndarray], None]]=None,
callback_steps: Optional[int]=1,
**kwargs, ):
if isinstance(prompt, str):
batch_size = 1
elif isinstance(prompt, list):
batch_size = len(prompt)
else:
raise ValueError(
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
)
if height % 8 != 0 or width % 8 != 0:
raise ValueError(
f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
)
if (callback_steps is None) or (callback_steps is not None and (
not isinstance(callback_steps, int) or callback_steps <= 0)):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}.")
if generator is None:
generator = np.random
# get prompt text embeddings
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
return_tensors="np", )
text_input_ids = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
removed_text = self.tokenizer.batch_decode(
text_input_ids[:, self.tokenizer.model_max_length:])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}")
text_input_ids = text_input_ids[:, :
self.tokenizer.model_max_length]
input_name = self.text_encoder_runtime.get_input_info(0).name
text_embeddings = self.text_encoder_runtime.infer({
input_name: text_input_ids.astype(np.int64)
})[0]
text_embeddings = np.repeat(
text_embeddings, num_images_per_prompt, axis=0)
do_classifier_free_guidance = guidance_scale > 1.0
if do_classifier_free_guidance:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}.")
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt] * batch_size
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`.")
else:
uncond_tokens = negative_prompt
max_length = text_input_ids.shape[-1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="np")
uncond_embeddings = self.text_encoder_runtime.infer({
input_name: uncond_input.input_ids.astype(np.int64)
})[0]
uncond_embeddings = np.repeat(
uncond_embeddings, num_images_per_prompt, axis=0)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
text_embeddings = np.concatenate(
[uncond_embeddings, text_embeddings])
# get the initial random noise unless the user supplied it
latents_dtype = text_embeddings.dtype
latents_shape = (batch_size * num_images_per_prompt, 4, height // 8,
width // 8)
if latents is None:
latents = generator.randn(*latents_shape).astype(latents_dtype)
elif latents.shape != latents_shape:
raise ValueError(
f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}"
)
# set timesteps
self.scheduler.set_timesteps(num_inference_steps)
latents = latents * self.scheduler.init_noise_sigma
accepts_eta = "eta" in set(
inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
for i, t in enumerate(self.scheduler.timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = np.concatenate(
[latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(
latent_model_input, t)
# predict the noise residual
sample_name = self.unet_runtime.get_input_info(0).name
timestep_name = self.unet_runtime.get_input_info(1).name
encoder_hidden_states_name = self.unet_runtime.get_input_info(
2).name
# Required fp16 input.
input_type = [np.float16, np.float16, np.float16]
if self.unet_runtime.get_input_info(0).dtype == fd.FDDataType.FP32:
input_type = [np.float32, np.int64, np.float32]
noise_pred = self.unet_runtime.infer({
sample_name: latent_model_input.astype(input_type[0]),
timestep_name: np.array(
[t], dtype=input_type[1]),
encoder_hidden_states_name:
text_embeddings.astype(input_type[2]),
})[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents,
**extra_step_kwargs).prev_sample
latents = np.array(latents)
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
# scale and decode the image latents with vae
latents = 1 / 0.18215 * latents
sample_name = self.vae_decoder_runtime.get_input_info(0).name
input_dtype = np.float16
if self.vae_decoder_runtime.get_input_info(
0).dtype == fd.FDDataType.FP32:
input_dtype = np.float32
image = self.vae_decoder_runtime.infer({
sample_name: latents.astype(input_dtype)
})[0]
image = np.clip(image / 2 + 0.5, 0, 1)
image = image.transpose((0, 2, 3, 1))
if output_type == "pil":
image = self.numpy_to_pil(image)
return image
@staticmethod
def numpy_to_pil(images):
"""
Convert a numpy image or a batch of images to a PIL image.
"""
if images.ndim == 3:
images = images[None, ...]
images = (images * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
return pil_images