forked from PaddlePaddle/FastDeploy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexport_model.py
100 lines (88 loc) · 3.59 KB
/
export_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import paddle
import paddlenlp
from ppdiffusers import UNet2DConditionModel, AutoencoderKL
from ppdiffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
from paddlenlp.transformers import CLIPTextModel
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--pretrained_model_name_or_path",
default='CompVis/stable-diffusion-v1-4',
help="The pretrained diffusion model.")
parser.add_argument(
"--output_path",
type=str,
required=True,
help="The pretrained diffusion model.")
return parser.parse_args()
class VAEDecoder(AutoencoderKL):
def forward(self, z):
return self.decode(z, True).sample
if __name__ == "__main__":
paddle.set_device('cpu')
args = parse_arguments()
# Load models and create wrapper for stable diffusion
text_encoder = CLIPTextModel.from_pretrained(
os.path.join(args.pretrained_model_name_or_path, "text_encoder"))
vae_decoder = VAEDecoder.from_pretrained(
args.pretrained_model_name_or_path, subfolder="vae")
unet = UNet2DConditionModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="unet")
# Convert to static graph with specific input description
text_encoder = paddle.jit.to_static(
text_encoder,
input_spec=[
paddle.static.InputSpec(
shape=[None, None], dtype="int64",
name="input_ids") # input_ids
])
# Save text_encoder in static graph model.
save_path = os.path.join(args.output_path, "text_encoder", "inference")
paddle.jit.save(text_encoder, save_path)
print(f"Save text_encoder model in {save_path} successfully.")
# Convert to static graph with specific input description
vae_decoder = paddle.jit.to_static(
vae_decoder,
input_spec=[
paddle.static.InputSpec(
shape=[None, 4, 64, 64], dtype="float32",
name="latent"), # latent
])
# Save vae_decoder in static graph model.
save_path = os.path.join(args.output_path, "vae_decoder", "inference")
paddle.jit.save(vae_decoder, save_path)
print(f"Save vae_decoder model in {save_path} successfully.")
# Convert to static graph with specific input description
unet = paddle.jit.to_static(
unet,
input_spec=[
paddle.static.InputSpec(
shape=[None, 4, None, None],
dtype="float32",
name="latent_input"), # latent
paddle.static.InputSpec(
shape=[1], dtype="int64", name="timestep"), # timesteps
paddle.static.InputSpec(
shape=[None, None, 768],
dtype="float32",
name="encoder_embedding") # encoder_embedding
])
save_path = os.path.join(args.output_path, "unet", "inference")
paddle.jit.save(unet, save_path)
print(f"Save unet model in {save_path} successfully.")