-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuffer_process.h
431 lines (413 loc) · 11 KB
/
buffer_process.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
//
// Copyright (c) 2016-2017 Kimball Thurston
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
// IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
// CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
// OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
#if !defined _PAL_H_
# error "Never use pal/buffer_process.h directly. Include <pal.h> instead."
#endif
#ifndef _PAL_BUFFER_PROCESS_H_
# define _PAL_BUFFER_PROCESS_H_ 1
namespace PAL_NAMESPACE
{
template <typename F>
inline void
process_inplace( PAL_RESTRICT_PTR(float) buffer, size_t nLeft, F && func )
{
#if defined(PAL_HAS_FVEC8) || defined(PAL_HAS_FVEC4)
#if defined(PAL_HAS_FVEC8)
static const int kAlignMask = 0x1F;
static const int kAlignNumber = 8;
#elif defined(PAL_HAS_FVEC4)
static const int kAlignMask = 0xF;
static const int kAlignNumber = 4;
#endif
// prefetches L1 cache line size (64 bytes currently on x86)
// while we get set up
prefetch_readwrite( buffer );
// we can do this all unaligned on modern CPUs, is the
// alignment check and scalar loop worth it?
// So, if we want any of this to be worth it on modern
// architectures, we want a memory alignment to be such that we do
// not cross cache line boundaries on load / store. Otherwise we
// can just use the unaligned accessors and not worry about it.
int nToAlign = reinterpret_cast<intptr_t>( buffer ) & kAlignMask;
// if it's 4-byte aligned we can perform loop peeling
// and get to cache aligned
if ( ( nToAlign & 0x3 ) == 0 )
{
nToAlign = ( nToAlign >> 2 );
if ( nToAlign > 0 )
{
while ( nLeft > 0 && nToAlign < kAlignNumber )
{
*buffer = std::forward<F>( func )( *buffer );
++buffer;
++nToAlign;
--nLeft;
}
}
while ( nLeft >= 16 )
{
// get the next loop's worth (the next cache line)
prefetch_readwrite( buffer + 16 );
#if defined(PAL_HAS_FVEC8)
store_aligned( buffer, std::forward<F>( func )( load8f_aligned( buffer ) ) );
buffer += 8;
store_aligned( buffer, std::forward<F>( func )( load8f_aligned( buffer ) ) );
buffer += 8;
#elif defined(PAL_HAS_FVEC4)
store_aligned( buffer, std::forward<F>( func )( load4f_aligned( buffer ) ) );
buffer += 4;
store_aligned( buffer, std::forward<F>( func )( load4f_aligned( buffer ) ) );
buffer += 4;
store_aligned( buffer, std::forward<F>( func )( load4f_aligned( buffer ) ) );
buffer += 4;
store_aligned( buffer, std::forward<F>( func )( load4f_aligned( buffer ) ) );
buffer += 4;
#endif
nLeft -= 16;
}
switch ( nLeft )
{
case 15:
case 14:
case 13:
case 12:
#if defined(PAL_HAS_FVEC8)
store_aligned( buffer, std::forward<F>( func )( load8f_aligned( buffer ) ) );
buffer += 8;
store_aligned( buffer, std::forward<F>( func )( load4f_aligned( buffer ) ) );
buffer += 4;
#elif defined(PAL_HAS_FVEC4)
store_aligned( buffer, std::forward<F>( func )( load4f_aligned( buffer ) ) );
buffer += 4;
store_aligned( buffer, std::forward<F>( func )( load4f_aligned( buffer ) ) );
buffer += 4;
store_aligned( buffer, std::forward<F>( func )( load4f_aligned( buffer ) ) );
buffer += 4;
#endif
nLeft -= 12;
break;
case 11:
case 10:
case 9:
case 8:
#if defined(PAL_HAS_FVEC8)
store_aligned( buffer, std::forward<F>( func )( load8f_aligned( buffer ) ) );
buffer += 8;
#elif defined(PAL_HAS_FVEC4)
store_aligned( buffer, std::forward<F>( func )( load4f_aligned( buffer ) ) );
buffer += 4;
store_aligned( buffer, std::forward<F>( func )( load4f_aligned( buffer ) ) );
buffer += 4;
#endif
nLeft -= 8;
break;
case 7:
case 6:
case 5:
case 4:
#if defined(PAL_HAS_FVEC4)
store_aligned( buffer, std::forward<F>( func )( load4f_aligned( buffer ) ) );
buffer += 4;
#endif
nLeft -= 4;
break;
default:
break;
}
switch ( nLeft )
{
case 3:
*buffer = std::forward<F>( func )( *buffer );
++buffer;
// FALLTHROUGH
case 2:
*buffer = std::forward<F>( func )( *buffer );
++buffer;
// FALLTHROUGH
case 1:
*buffer = std::forward<F>( func )( *buffer );
++buffer;
// FALLTHROUGH
case 0:
// NB: EXIT POINT
return;
default:
// this should be an error?
break;
}
}
else
{
// can never be aligned, just run unaligned and leave however
// many for the scalar loop
#if defined(PAL_HAS_FVEC8)
while ( nLeft >= 8 )
{
store( buffer, std::forward<F>( func )( load8f( buffer ) ) );
buffer += 8;
nLeft -= 8;
}
#endif
#if defined(PAL_HAS_FVEC4)
while ( nLeft >= 4 )
{
store( buffer, std::forward<F>( func )( load4f( buffer ) ) );
buffer += 4;
nLeft -= 4;
}
#endif
// fall through and let scalar code take care of any
// remaining
}
#endif
// Finish off any remaining scalars
while ( nLeft > 0 )
{
*buffer = std::forward<F>( func )( *buffer );
++buffer;
--nLeft;
}
}
template <typename F>
PAL_INLINE void
process_inplace( PAL_RESTRICT_PTR(float) buffer, PAL_RESTRICT_PTR(float) end, F && func )
{
size_t nLeft = end - buffer;
process_inplace( buffer, nLeft, std::forward<F>( func ) );
}
template <typename F>
PAL_INLINE void
process( PAL_RESTRICT_PTR(float) out, PAL_RESTRICT_PTR(const float) in, size_t nLeft, F && func )
{
if ( out == in )
{
process_inplace( out, nLeft, std::forward<F>( func ) );
return;
}
#if defined(PAL_HAS_FVEC8) || defined(PAL_HAS_FVEC4) || defined(PAL_HAS_FVEC2)
#if defined(PAL_HAS_FVEC8)
static const int kAlignMask = 0x1F;
static const int kAlignNumber = 8;
#elif defined(PAL_HAS_FVEC4)
static const int kAlignMask = 0xF;
static const int kAlignNumber = 4;
#elif defined(PAL_HAS_FVEC2)
static const int kAlignMask = 0x7;
static const int kAlignNumber = 2;
#endif
// prefetches L1 cache line size (64 bytes currently on x86)
// while we get set up
prefetch_readwrite( out );
prefetch_read( in );
// we can do this all unaligned on modern CPUs, is the
// alignment check and scalar loop worth it?
int nToAlignO = reinterpret_cast<intptr_t>( out ) & kAlignMask;
int nToAlignI = reinterpret_cast<intptr_t>( in ) & kAlignMask;
// TODO: Write tests to see if all this loop peeling and alignment
// stuff is really worth it on modern architectures
//
// if it's 4-byte aligned we can do this aligned
if ( nToAlignO == nToAlignI && ( nToAlignO & 0x3 ) == 0 )
{
nToAlignO = ( nToAlignO >> 2 );
if ( nToAlignO > 0 )
{
while ( nLeft > 0 && nToAlignO < kAlignNumber )
{
*out = func( *in );
++out; ++in;
++nToAlignO;
--nLeft;
}
}
while ( nLeft >= 16 )
{
// get the next loop's worth
prefetch_readwrite( out + 16 );
prefetch_read( in + 16 );
#if defined(PAL_HAS_FVEC8)
store_aligned( out, func( load8f_aligned( in ) ) );
out += 8; in += 8;
store_aligned( out, func( load8f_aligned( in ) ) );
out += 8; in += 8;
#elif defined(PAL_HAS_FVEC4)
store_aligned( out, func( load4f_aligned( in ) ) );
out += 4; in += 4;
store_aligned( out, func( load4f_aligned( in ) ) );
out += 4; in += 4;
store_aligned( out, func( load4f_aligned( in ) ) );
out += 4; in += 4;
store_aligned( out, func( load4f_aligned( in ) ) );
out += 4; in += 4;
#elif defined(PAL_HAS_FVEC2)
for ( int xx = 0; xx < 8; ++x )
{
store_aligned( out, func( load2f_aligned( in ) ) );
out += 2; in += 2;
}
#endif
nLeft -= 16;
}
switch ( nLeft )
{
case 15:
case 14:
case 13:
case 12:
#if defined(PAL_HAS_FVEC8)
store_aligned( out, func( load8f_aligned( in ) ) );
out += 8; in += 8;
store_aligned( out, func( load4f_aligned( in ) ) );
out += 4; in += 4;
#elif defined(PAL_HAS_FVEC4)
store_aligned( out, func( load4f_aligned( in ) ) );
out += 4; in += 4;
store_aligned( out, func( load4f_aligned( in ) ) );
out += 4; in += 4;
store_aligned( out, func( load4f_aligned( in ) ) );
out += 4; in += 4;
#elif defined(PAL_HAS_FVEC2)
for ( int xx = 0; xx < 6; ++x )
{
store_aligned( out, func( load2f_aligned( in ) ) );
out += 2; in += 2;
}
#endif
nLeft -= 12;
break;
case 11:
case 10:
case 9:
case 8:
#if defined(PAL_HAS_FVEC8)
store_aligned( out, func( load8f_aligned( in ) ) );
out += 8; in += 8;
#elif defined(PAL_HAS_FVEC4)
store_aligned( out, func( load4f_aligned( in ) ) );
out += 4; in += 4;
store_aligned( out, func( load4f_aligned( in ) ) );
out += 4; in += 4;
#elif defined(PAL_HAS_FVEC2)
for ( int xx = 0; xx < 4; ++x )
{
store_aligned( out, func( load2f_aligned( in ) ) );
out += 2; in += 2;
}
#endif
nLeft -= 8;
break;
case 7:
case 6:
case 5:
case 4:
#if defined(PAL_HAS_FVEC4)
store_aligned( out, func( load4f_aligned( in ) ) );
out += 4; in += 4;
#elif defined(PAL_HAS_FVEC2)
for ( int xx = 0; xx < 2; ++x )
{
store_aligned( out, func( load2f_aligned( in ) ) );
out += 2; in += 2;
}
#endif
nLeft -= 4;
break;
default:
break;
}
switch ( nLeft )
{
case 3:
*out = func( *in );
++out; ++in;
// FALLTHROUGH
case 2:
*out = func( *in );
++out; ++in;
// FALLTHROUGH
case 1:
*out = func( *in );
++out; ++in;
// FALLTHROUGH
case 0:
// NB: EXIT POINT
return;
default:
break;
}
}
else
{
// can never be aligned, just run unaligned and leave however
// many for the scalar loop
#if defined(PAL_HAS_FVEC8)
while ( nLeft >= 8 )
{
store( out, func( load8f( in ) ) );
out += 8; in += 8;
nLeft -= 8;
}
#endif
#if defined(PAL_HAS_FVEC4)
while ( nLeft >= 4 )
{
store( out, func( load4f( in ) ) );
out += 4; in += 4;
nLeft -= 4;
}
#endif
#if defined(PAL_HAS_FVEC2)
while ( nLeft >= 2 )
{
store( out, func( load2f( in ) ) );
out += 2; in += 2;
nLeft -= 2;
}
#endif
// fall through and let scalar code take care of any
// remaining
}
#endif
// Finish off any remaining scalars
while ( nLeft > 0 )
{
*out = func( *in );
++out; ++in;
--nLeft;
}
}
template <typename F>
PAL_INLINE void
process( PAL_RESTRICT_PTR(float) out, PAL_RESTRICT_PTR(float) end, PAL_RESTRICT_PTR(const float) in, F && func )
{
if ( out == in )
{
process_inplace( out, end, std::forward<F>( func ) );
}
else
{
size_t nLeft = end - out;
process( out, in, nLeft, std::forward<F>( func ) );
}
}
} // namespace pal
#endif // _PAL_BUFFER_PROCESS_H_