-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
102 lines (81 loc) · 3.68 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import os
import cv2
import argparse
import numpy as np
from config import *
from model import *
from val import run
from tqdm import tqdm
from tensorflow.keras import Model, Input
def get_test_data(images_path, number):
images_path = os.path.join(images_path, "{}_gt.png".format(number))
exposures = np.load(images_path.replace("gt.png", "exposures.npy"))
exposures = exposures - exposures[1]
sh_name = images_path.replace("gt", "short")
me_name = images_path.replace("gt", "medium")
lo_name = images_path.replace("gt", "long")
image_short = cv2.cvtColor(cv2.imread(
sh_name, cv2.IMREAD_UNCHANGED), cv2.COLOR_BGR2RGB) / 255.0
image_medium = cv2.cvtColor(cv2.imread(
me_name, cv2.IMREAD_UNCHANGED), cv2.COLOR_BGR2RGB) / 255.0
image_long = cv2.cvtColor(cv2.imread(
lo_name, cv2.IMREAD_UNCHANGED), cv2.COLOR_BGR2RGB) / 255.0
# image_short = cv2.resize(image_short, (1888, 1056))
# image_medium = cv2.resize(image_medium, (1888, 1056))
# image_long = cv2.resize(image_long, (1888, 1056))
gamma = 2.24
image_short_corrected = (
((image_short**gamma)*2.0**(-1*exposures[0]))**(1/gamma))
image_medium_corrected = (
((image_medium**gamma)*2.0**(-1*exposures[1]))**(1/gamma))
image_long_corrected = (
((image_long**gamma)*2.0**(-1*exposures[2]))**(1/gamma))
sh = np.expand_dims(image_short_corrected, axis=0)
me = np.expand_dims(image_medium_corrected, axis=0)
lo = np.expand_dims(image_long_corrected, axis=0)
sh_l = np.expand_dims(image_short, axis=0)
me_l = np.expand_dims(image_medium, axis=0)
lo_l = np.expand_dims(image_long, axis=0)
shc = np.concatenate([sh_l, sh], axis=-1)
mec = np.concatenate([me_l, me], axis=-1)
loc = np.concatenate([lo_l, lo], axis=-1)
imgs_np = np.concatenate([shc, mec, loc], axis=0)
imgs_np = np.expand_dims(imgs_np, axis=0)
return imgs_np
def tonemap(x):
return (np.log(1 + 5000 * x)) / np.log(1 + 5000)
def run(config, model):
namelist = ["%04d" % i for i in range(60)]
for name in tqdm(namelist):
SDR = get_test_data(config.test_path, name)
rs = model.predict(SDR)
out = rs[0]
out = tonemap(out**2.24)
out[out > 1.0] = 1.0
cv2.imwrite(os.path.join(config.save_path, 'hdr_{}.jpg'.format(name)),
cv2.cvtColor(np.uint8(out*255), cv2.COLOR_BGR2RGB))
# cv2.imwrite(os.path.join(config.save_path,
# 'hdr_{}.jpg'.format(name)), np.uint8(out*255))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Input Parameters
parser.add_argument('--test_path', type=str, default="valid/")
parser.add_argument('--save_path', type=str, default="test/")
parser.add_argument('--filter', type=int, default=8)
parser.add_argument('--gpu', type=str, default='1')
parser.add_argument('--attention_filter', type=int, default=16)
parser.add_argument('--kernel', type=int, default=3)
parser.add_argument('--encoder_kernel', type=int, default=3)
parser.add_argument('--decoder_kernel', type=int, default=3)
parser.add_argument('--triple_pass_filter', type=int, default=16)
config = parser.parse_args()
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ['CUDA_VISIBLE_DEVICES'] = config.gpu
# model_x = MIRNet(32, config.attention_filter,
# config.encoder_kernel, config.triple_pass_filter, config.num_triple_pass, config.filters)
model_x = Net(config)
in_data = Input(batch_shape=(None, 3, 1060, 1900, nb_ch_all))
model = Model(inputs=in_data, outputs=model_x.main_model(in_data))
model.summary()
model.load_weights(path_save_model)
run(config, model)