forked from aliaksandr960/segment-anything-eo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsliding_window.py
136 lines (104 loc) · 4.26 KB
/
sliding_window.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import tempfile
import cv2
import numpy as np
import rasterio
from tqdm import tqdm
def chw_to_hwc(block):
# Grab first 3 channels
block = block[:3, ...]
# CHW to HWC
block = np.transpose(block, (1, 2, 0))
return block
def hwc_to_hw(block, channel=0):
# Grab first 3 channels
block = block[..., channel].astype(np.uint8)
return block
def calculate_sample_grid(raster_h, raster_w, sample_h, sample_w, bound):
h, w = sample_h, sample_w
blocks = []
height = h + 2 * bound
width = w + 2 * bound
for y in range(- bound, raster_h, h):
for x in range(- bound, raster_w, w):
rigth_x_bound = max(bound,
x + width - raster_w)
bottom_y_bound = max(bound,
y + height - raster_h)
blocks.append({'x': x,
'y': y,
'height': height,
'width': width,
'bounds':
[[bound, bottom_y_bound], [bound, rigth_x_bound]],
})
return blocks
def read_block(src, x, y, height, width, nodata=0, **kwargs):
return src.read(window=((y, y + height), (x, x + width)), boundless=True, fill_value=nodata)
def write_block(dst, raster, y, x, height, width, bounds=None):
if bounds:
raster = raster[bounds[0][0]:raster.shape[0]-bounds[0][1], bounds[1][0]:raster.shape[1]-bounds[1][1]]
x += bounds[1][0]
y += bounds[0][0]
width = width - bounds[1][1] - bounds[1][0]
height = height - bounds[0][1] - bounds[0][0]
dst.write(raster, 1, window=((y, y+height), (x, x+width)))
def tiff_to_tiff(src_fp, dst_fp, func,
data_to_rgb=chw_to_hwc,
sample_size=(512, 512),
sample_resize=None,
bound=128):
with rasterio.open(src_fp) as src:
profile = src.profile
# Computer blocks
rh, rw = profile['height'], profile['width']
sh, sw = sample_size
bound = bound
resize_hw = sample_resize
sample_grid = calculate_sample_grid(raster_h=rh, raster_w=rw, sample_h=sh, sample_w=sw, bound=bound)
# set 1 channel uint8 output
profile['count'] = 1
profile['dtype'] = 'uint8'
with rasterio.open(dst_fp, 'w', **profile) as dst:
for b in tqdm(sample_grid):
r = read_block(src, **b)
uint8_rgb_in = data_to_rgb(r)
orig_size = uint8_rgb_in.shape[:2]
if resize_hw is not None:
uint8_rgb_in = cv2.resize(uint8_rgb_in, resize_hw, interpolation=cv2.INTER_LINEAR)
# Do someting
uin8_out = func(uint8_rgb_in)
if resize_hw is not None:
uin8_out = cv2.resize(uin8_out, orig_size, interpolation=cv2.INTER_NEAREST)
# Zero chennel, becouse
write_block(dst, uin8_out, **b)
def image_to_image(image, func,
sample_size=(384, 384),
sample_resize=None,
bound=128):
with tempfile.NamedTemporaryFile() as src_tmpfile:
s, b = cv2.imencode('.tif', image)
src_tmpfile.write(b.tobytes())
src_fp = src_tmpfile.name
with tempfile.NamedTemporaryFile() as dst_tmpfile:
dst_fp = dst_tmpfile.name
tiff_to_tiff(src_fp, dst_fp, func,
data_to_rgb=chw_to_hwc,
sample_size=sample_size,
sample_resize=sample_resize,
bound=bound)
result = cv2.imread(dst_fp)
return result[..., 0]
def tiff_to_image(src_fp, func,
data_to_rgb=chw_to_hwc,
sample_size=(512, 512),
sample_resize=None,
bound=128):
with tempfile.NamedTemporaryFile() as dst_tmpfile:
dst_fp = dst_tmpfile.name
tiff_to_tiff(src_fp, dst_fp, func,
data_to_rgb=data_to_rgb,
sample_size=sample_size,
sample_resize=sample_resize,
bound=bound)
result = cv2.imread(dst_fp)
return result[..., 0]