-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdivisible_divisions.py
65 lines (58 loc) · 2.78 KB
/
divisible_divisions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# Copyright (c) 2021 kamyu. All rights reserved.
#
# Google Code Jam 2021 Virtual World Finals - Problem D. Divisible Divisions
# https://codingcompetitions.withgoogle.com/codejam/round/0000000000436329/000000000084fb3a
#
# Time: O(|S|logD + D)
# Space: O(|S| + D)
#
from collections import Counter
def addmod(a, b):
return (a+b)%MOD
def divisible_divisions():
S, D = raw_input().strip().split()
S, D = map(int, list(S)), int(D)
cnts = Counter([1])
d_remain = D
for p in [2, 5]:
while d_remain%p == 0:
d_remain //= p
cnts[p] += 1
l = max(cnts.itervalues()) # l = O(logD)
suffix = [0]*(len(S)+1)
basis = 1
for i in reversed(xrange(len(S))):
suffix[i] = (suffix[i+1] + S[i]*basis) % d_remain
basis = basis*10 % d_remain
# dp1[i]: count of divisible divisions of this prefix whose last division is divisible by D ends at S[i-1]
# dp2[i]: count of divisible divisions of this prefix whose last division is not divisible by D ends at S[i-1]
dp1, dp2 = [[0]*(len(S)+1) for _ in xrange(2)]
dp1[0] = 1
prefix_total, prefix_dp1 = [[0]*d_remain for _ in xrange(2)]
accu_dp1, d_2_5 = 1, D//d_remain
for i in xrange(1, len(S)+1):
dp2[i] = accu_dp1
curr, basis = 0, 1
for k in xrange(1, l+1): # O(logD) times
if i-k < 0:
break
j = i-k
curr = (curr + S[j]*basis) % d_2_5
if k == l:
prefix_total[suffix[j]] = addmod(prefix_total[suffix[j]], addmod(dp1[j], dp2[j]))
prefix_dp1[suffix[j]] = addmod(prefix_dp1[suffix[j]], dp1[j])
if curr == 0:
# since all(S[j:i]%d_2_5 == 0 for j in xrange(i-l+1)) is true,
# find sum(cnt[j] for j in xrange(i-l+1) if suffix[j] == suffix[i]) <=> find sum(cnt[j] for j in xrange(i-l+1) if S[j:i]%D == 0)
dp1[i] = addmod(dp1[i], prefix_total[suffix[i]]) # prefix_total[suffix[i]] = sum(dp1[j]+dp2[j] for j in xrange(i-l+1) if suffix[j] == suffix[i])%MOD
dp2[i] = addmod(dp2[i], -prefix_dp1[suffix[i]]) # prefix_dp1[suffix[i]] = sum(dp1[j] for j in xrange(i-l+1) if suffix[j] == suffix[i])%MOD
break
if curr == 0 and suffix[j] == suffix[i]: # (S[j:i]%d_2_5 == 0) and (suffix[j]-suffix[i] == 0 <=> (S[j:i]*10^(len(S)-i)%d_remain == 0 and gcd(d_remain, 10^(len(S)-i)) == 1) <=> S[j:i]%d_remain == 0) <=> S[j:i]%D == 0
dp1[i] = addmod(dp1[i], addmod(dp1[j], dp2[j]))
dp2[i] = addmod(dp2[i], -dp1[j])
basis = basis*10 % d_2_5
accu_dp1 = addmod(accu_dp1, dp1[i])
return addmod(dp1[len(S)], dp2[len(S)])
MOD = 10**9+7
for case in xrange(input()):
print 'Case #%d: %s' % (case+1, divisible_divisions())