-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathbinary_search_game3.py
118 lines (105 loc) Β· 5.12 KB
/
binary_search_game3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# Copyright (c) 2021 kamyu. All rights reserved.
#
# Google Code Jam 2021 Round 3 - Problem D. Binary Search Game
# https://codingcompetitions.withgoogle.com/codejam/round/0000000000436142/0000000000813e1b
#
# Time: O(2^(2^(L-1)) * (2^L + N^2) + N^3)
# Space: O(N^2 + L)
#
from collections import Counter
def addmod(a, b):
return (a+b)%MOD
def submod(a, b):
return (a-b)%MOD
def mulmod(a, b):
return (a*b)%MOD
def inverse(n): # compute and cache, at most O(N) time and O(N) space in all test cases
while len(inv) <= n: # lazy initialization
inv.append(inv[MOD%len(inv)]*(MOD-MOD//len(inv)) % MOD) # https://cp-algorithms.com/algebra/module-inverse.html
return inv[n]
def inverse_factorial(n): # compute and cache, at most O(N) time and O(N) space in all test cases
while len(inv_fact) <= n: # lazy initialization
inv_fact.append(inv_fact[-1]*inverse(len(inv_fact)) % MOD)
return inv_fact[n]
# f(x) = c(N+1)*x^(N+1) + c(N)*x^N + ... + c(0)*x^0
# given f(0), f(1), ... f(N+1), compute f(M)
# usually, this should be done in O(N^2) time,
# since x0, x1, ..., x(n-1) are consecutive integers,
# we can compute in O(N) time
def lagrange_interpolation(f, x): # Time: O(N)
n = len(f)
prefix = [1]*n
for i in xrange(1, len(f)): # (x-x0)*(x-x1)* ... * (x-x(n-1))
prefix[i] = mulmod(prefix[i-1], x-(i-1))
suffix = [1]*n
for i in reversed(xrange(len(f)-1)):
suffix[i] = mulmod(suffix[i+1], x-(i+1))
result = 0
for i in xrange(len(f)):
a = mulmod(prefix[i], suffix[i]) # (x-x0)*(x-x1)* ... * (x-x(n-1)) / (x-xi)
b = mulmod(inverse_factorial(i), mulmod((-1)**((n-1-i)%2), inverse_factorial(n-1-i))) # (1/i!) * ((-1)^((n-1-i)%2)/(n-1-i)!)
result = addmod(result, mulmod(f[i], mulmod(a, b)))
return result
def mask_to_set(R, mask): # Time: O(N)
result = set()
for i in R:
if mask&1:
result.add(i)
mask >>= 1
return result
def check(A, values, left, right): # Time: O(2^L), Space: O(L)
if left == right:
return values[A[left]]
mid = left + (right-left)//2
win1, lose1 = check(A, values, left, mid)
win2, lose2 = check(A, values, mid+1, right)
return [addmod(addmod(mulmod(lose1, lose2),
mulmod(lose1, win2)),
mulmod(win1, lose2)),
mulmod(win1, win2)]
# given f(x) = (M-(x-1))^a*(x-1)^b*M^(N-a-b), f(0) = 0
# compute accumulated f(M) by Lagrange interpolation
def g(N, M, a, b, lookup): # compute and cache, at most O(N^3) time and O(N^2) space in each test case
if (a, b) not in lookup: # lazy initialization
f = [mulmod(mulmod(pow(M-(k-1), a, MOD), pow(k-1, b, MOD)), pow(M, N-a-b, MOD)) if k else 0 for k in xrange(min(a+b+1, M)+1)]
for k in xrange(1, len(f)):
f[k] = addmod(f[k], f[k-1]) # accumulate f
lookup[(a, b)] = lagrange_interpolation(f, M)
return lookup[(a, b)]
def binary_search_game():
N, M, L = map(int, raw_input().strip().split())
A = map(lambda x: int(x)-1, raw_input().strip().split())
left = {A[i] for i in xrange(len(A)//2)} # left half of board set
right = {A[i] for i in xrange(len(A)//2, len(A))} # right half of board set
both = left.intersection(right)
left = {i for i in left if i not in both}
right = {i for i in right if i not in both}
default_state = [1, 0] if L%2 else [0, 1]
chosen_state = default_state[::-1]
result, values, lookup = 0, [default_state for _ in xrange(N)], {}
for mask_both in xrange(2**len(both)):
left_cnt, right_cnt = Counter(), Counter()
both_C = mask_to_set(both, mask_both)
for i in both:
values[i] = chosen_state if i in both_C else default_state
for mask_left in xrange(2**len(left)): # mask_left and mask_right are independent of states, loop O(2^(len(both)+len(left))) <= O(2^(2^L/2)) times
left_C = mask_to_set(left, mask_left)
for i in left:
values[i] = chosen_state if i in left_C else default_state
left_cnt[len(left_C)] += check(A, values, 0, (len(A)-1)//2)[0] # count if alice loses, Time: O(2^L)
for mask_right in xrange(2**len(right)): # mask_left and mask_right are independent of states, loop O(2^(len(both)+len(right))) <= O(2^(2^L/2)) times
right_C = mask_to_set(right, mask_right)
for i in right:
values[i] = chosen_state if i in right_C else default_state
right_cnt[len(right_C)] += check(A, values, (len(A)-1)//2+1, len(A)-1)[0] # count if alice loses, Time: O(2^L)
result = addmod(result, g(N, M, len(both_C), len(both)-len(both_C), lookup)) # add all count of both_C
for i in xrange(len(left)+1): # O(N^2) times
for j in xrange(len(right)+1):
cnt = g(N, M, len(both_C)+i+j, (len(both)-len(both_C))+(len(left)-i)+(len(right)-j), lookup)
result = submod(result, mulmod(mulmod(left_cnt[i], right_cnt[j]), cnt)) # sub lose count of both_C
return result
MOD = 10**9+7
inv = [0, 1]
inv_fact = [1, 1]
for case in xrange(input()):
print 'Case #%d: %s' % (case+1, binary_search_game())