-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathjurisdiction-restrictions.py
129 lines (115 loc) · 4.27 KB
/
jurisdiction-restrictions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# Copyright (c) 2019 kamyu. All rights reserved.
#
# Google Code Jam 2018 World Finals - Problem A. Jurisdiction Restrictions
# https://codingcompetitions.withgoogle.com/codejam/round/0000000000007766/000000000004dbbd
#
# Time: O(S^6 * log(R * C)), pass in PyPy2 but Python2,
# by using better but complicated max flow algorithm (Time: O(V * E)),
# it can be improved to O(S^4 * log(R * C)), but Dinic (Time: O(V^2 * E)) is enough
# Space: O(S^2)
#
from collections import deque
# Time: O(V^2 * E)
# Space: O(V + E)
class Dinic(object):
def __init__(self, n):
self.adj = [[] for _ in xrange(n)]
def add_edge(self, i, j, c):
self.adj[i].append([j, c, len(self.adj[j])])
self.adj[j].append([i, 0, len(self.adj[i]) - 1])
def max_flow(self, S, T):
def bfs(S, T, adj, lev): # Time: O(E), levelize
for i in xrange(len(adj)):
lev[i] = -1
lev[S] = 0
q = deque([S])
while q:
v = q.popleft()
for i in xrange(len(adj[v])):
to, cap, rev = adj[v][i]
if cap and lev[to] == -1:
lev[to] = lev[v] + 1
q.append(to)
return lev[T] != -1
def dfs(S, T, v, f, adj, lev, done): # Time: O(V * E), augment
if v == T or not f:
return f
while done[v] < len(adj[v]):
to, cap, rev = adj[v][done[v]]
if lev[to] > lev[v]:
t = dfs(S, T, to, min(f, cap), adj, lev, done)
if t > 0:
adj[to][rev][1] += t
adj[v][done[v]][1] -= t
return t
done[v] += 1
return 0
adj = self.adj
V = len(self.adj)
f = 0
lev = [-1] * V
while bfs(S, T, adj, lev): # at most O(V) times
done = [0] * V
while True:
t = dfs(S, T, S, float("inf"), adj, lev, done)
if t == 0:
break
f += t
return f
def check(S, areas, neighbors, expected_flow, x): # V = S^2, E = S^2, Time: O(V^2 * E) = O(S^6)
s = len(areas)+S
t = s+1
dinic = Dinic(t+1)
for i in xrange(S):
dinic.add_edge(s, i, x)
for a in neighbors[i]:
dinic.add_edge(i, a+S, areas[a])
for a in xrange(len(areas)):
dinic.add_edge(a+S, t, areas[a])
return dinic.max_flow(s, t) == expected_flow
def jurisdiction_restrictions():
R, C, S = map(int, raw_input().strip().split())
Rs, Cs, Ds = [0]*S, [0]*S, [0]*S
for i in xrange(S):
Rs[i], Cs[i], Ds[i] = map(int, raw_input().strip().split())
Rs[i] -= 1
Cs[i] -= 1
rows_set, cols_set = set([0, R]), set([0, C])
for i in xrange(S):
rows_set.add(max(Rs[i]-Ds[i], 0)), rows_set.add(min(Rs[i]+Ds[i]+1, R))
cols_set.add(max(Cs[i]-Ds[i], 0)), cols_set.add(min(Cs[i]+Ds[i]+1, C))
rows, cols = sorted(rows_set), sorted(cols_set)
areas, neighbors = [], [[] for _ in xrange(S)]
for i in xrange(len(rows)-1):
for j in xrange(len(cols)-1):
area = (rows[i+1]-rows[i])*(cols[j+1]-cols[j])
for k in xrange(S):
area -= int(rows[i] <= Rs[k] < rows[i+1] and
cols[j] <= Cs[k] < cols[j+1])
is_used = False
for k in xrange(S):
if abs(rows[i]-Rs[k]) <= Ds[k] and abs(cols[j]-Cs[k]) <= Ds[k]:
is_used = True
neighbors[k].append(len(areas))
if is_used:
areas.append(area)
total_area = sum(areas)
left, right = 0, R*C-S
while left <= right:
mid = left + (right-left)//2
if check(S, areas, neighbors, total_area, mid):
right = mid-1
else:
left = mid+1
max_p = left
left, right = 0, max_p
while left <= right:
mid = left + (right-left)//2
if not check(S, areas, neighbors, mid*S, mid):
right = mid-1
else:
left = mid+1
min_p = right
return max_p-min_p
for case in xrange(input()):
print 'Case #%d: %s' % (case+1, jurisdiction_restrictions())