-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path.Rhistory
512 lines (512 loc) · 18.7 KB
/
.Rhistory
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
birdtreels$tip.label[51]<-"Phalacrocorax_carbo" #rename "phalacrocorax_lucidus"
birdCDO<-comparative.data(phy = birdtreels,data = avgdf,#[avgdf$Category!="Terrestrial",]
names.col = Binomial,
vcv = TRUE, na.omit = FALSE,
warn.dropped = TRUE)
#check any tips dropped between linking phylogeny and dataframe
birdCDO$dropped
############RUN PGLS############
####scaling vs head mass########
####list of pgls models to run (only models with head mass are used)####
pgls_todo_hm<- c("log(TM_FP)~log(HM)",
"log(COffset)~log(HM)",
"log(UH)~log(HM)",
"log(TMA)~log(HM)",
"log(ECD)~log(HM)",
"log(TM)~log(HM)",#
"log(FP)~log(HM)",#
"log(RW)~log(HM)",
"log(ES)~log(HM)",
"log(Air)~log(HM)",#
"log(CL)~log(HM)",
"log(CV)~log(HM)")
####list of expected geometric coefficients for___###
geomcoefs<-c(0,#impedance-matching
0.33,
0.33,
0,
0.33,#auditory endorgan
0.67,#input/output areas
0.67,
0.67,
0.33,#stiffness
1,
0.33,#columella size
1)
#######functional category list#######
categorylist<-c(rep("Impedance matching",4),
"Auditory endorgan length",
rep("Input/output areas",3),
rep("Stiffness",2),
rep("Columella size",2))
#creates list of model outputs 'pgls_model_list'
#dataframe with results 'hm'
source("pgls_HM.R")
# list of models predicted by hm are in an object 'pgls_model_list'
pgls_models_list
#list of the original regressions here:
pgls_todo_hm
#########get residuals of a pgls of measure~head mass as a dataframe#####
getresids_as_df<-function(i){
residtest<-as.data.frame(residuals(pgls_models_list[[i]]))
residtest$resid_bname<-row.names(residtest)
resid_measure<-function(){
paste0("resid_",pgls_todo_hm[i])
}
residtest<-setNames(residtest,c(resid_measure(),"resid_bname"))
}
#############create list of dataframes containing residuals##############
resids_df_list<-list()
for(i in seq_along(pgls_todo_hm)){
resids_df_list[[i]]<-assign("toadd",getresids_as_df(i))
}
#for(i in seq_along(resids_df_list)){
#limit2<-limits
#limit2<-full_join(limits,resids_df_list[[i]],by = c("spp_aud" = "resid_bname"))
#
#}
#join residual data into single dataframe
joined<-limits %>% full_join(.,resids_df_list[[1]],by = c("spp_aud" = "resid_bname"))%>%
full_join(.,resids_df_list[[2]],by = c("spp_aud" = "resid_bname"))%>%
full_join(.,resids_df_list[[3]],by = c("spp_aud" = "resid_bname"))%>%
full_join(.,resids_df_list[[4]],by = c("spp_aud" = "resid_bname"))%>%
full_join(.,resids_df_list[[5]],by = c("spp_aud" = "resid_bname"))%>%
full_join(.,resids_df_list[[6]],by = c("spp_aud" = "resid_bname"))%>%
full_join(.,resids_df_list[[7]],by = c("spp_aud" = "resid_bname"))%>%
full_join(.,resids_df_list[[8]],by = c("spp_aud" = "resid_bname"))%>%
full_join(.,resids_df_list[[9]],by = c("spp_aud" = "resid_bname"))%>%
full_join(.,resids_df_list[[10]],by = c("spp_aud" = "resid_bname"))%>%
full_join(.,resids_df_list[[11]],by = c("spp_aud" = "resid_bname"))%>%
full_join(.,resids_df_list[[12]],by = c("spp_aud" = "resid_bname"))
#only keep audiogram species
joined<-joined[which(!is.na(joined$aud_rel)),]
names(joined)
#remove tilda from names to not mess up pgls formulas based on names
joined<-joined %>% rename_with(~ gsub("~", "vs", .x, fixed = TRUE))
residlist<-gsub("[()]","_",names(joined)[27:38])
joined<-setNames(joined,c(names(joined)[1:26],residlist))
names(joined)
#make the comparative data object for pgls point to your new
#residual data
birdCDO<-comparative.data(phy = birdtreels,data = joined,#[avgdf$Category!="Terrestrial",]
names.col =binomial,
vcv = TRUE, na.omit = F,
warn.dropped = TRUE)
#check any tips dropped between linking phylogeny and dataframe
birdCDO$dropped
############get model list#########3
modellist_bs<-paste0("bestsensitivity~",residlist)
modellist_lf<-paste0("log(LowHzlimit)~",residlist)
modellist_hf<-paste0("log(HighHzlimit)~",residlist)
modellist_bh<-paste0("log(besthz)~",residlist)
residlist
#note same object name for category list but different order relative to non-resid pgls
categorylist_lf<-c("Impedance match",
"Impedance match",
"Impedance match",
"Impedance match",
"Auditory endorgan length",
"Input/output areas",
"Input/output areas",
"Input/output areas",
"Stiffness",
"Stiffness",
"Columella size",
"Columella size")
categorylist_bs<-categorylist_lf
categorylist_bh<-categorylist_lf
categorylist_hf<-categorylist_lf
#pgls_models(modellist_bs[[2]])
###########recreate the pgls forumula list to include the residuals#################
####now the same scripts can be run for analysis for each part of the audiogram####
source("pgls_audiogram_lf.R")
# high frequency limit ----------------------------------------------------
source("pgls_audiogram_hf.R")
source("pgls_audiogram_bh.R")
source("pgls_audiogram_bs.R")
### combine results from regressions for each measure into a single datagrame
audio_pgls_results<-bind_rows(audiogrampgls_bh,
audiogrampgls_bs,
audiogrampgls_lf,
audiogrampgls_hf)
audio_pgls_results$CI95_low<-audio_pgls_results$Estimate-audio_pgls_results$`Std. Error`*1.96
audio_pgls_results$CI95_high<-audio_pgls_results$Estimate+audio_pgls_results$`Std. Error`*1.96
#############formatting table###############
#combine estimate +/- 95 CI into one cell
audio_pgls_results$pglsslope<-paste0(audio_pgls_results$Estimate," (",
format(round(audio_pgls_results$CI95_low, 3), nsmall = 3),
",",
format(round(audio_pgls_results$CI95_high, 3), nsmall = 3),
")")
#split up model column
spltmodel<-strsplit(audio_pgls_results$Model,"~")
audio_pgls_results$`Audiogram metric`<-unlist(lapply(spltmodel, `[[`, 1))
audio_pgls_results$anattraitx<-unlist(lapply(spltmodel, `[[`, 2))
#only keep significant relationships
audio_pgls_results<-audio_pgls_results %>%
select(`Audiogram metric`,
category,
Coefficients,
pglsslope,
Adj_Rsquared,
P.val,
Lambda)%>%
filter(Coefficients!="(Intercept)" &
P.val <0.05)
#arrange by audiogram metric, category, and R2
audio_pgls_results <-audio_pgls_results %>%
arrange(factor(audio_pgls_results$`Audiogram metric`),
factor(category,levels = c("Impedance match",
"Stiffness",
"Input/output areas",
"Auditory endorgan length",
"Columella size")),
desc(Adj_Rsquared))
# remove the "log" from 'Coefficients'
#audio_pgls_results$xmodel_nolog<-numeric()
for(i in seq_along(audio_pgls_results$Coefficients)){
audio_pgls_results$Coefficients[i]<-gsub("[\\(\\)]", "", regmatches(audio_pgls_results$Coefficients, gregexpr("\\(.*?\\)", audio_pgls_results$Coefficients))[[i]])
}
#visualize the table better using the flextable package
flexall<-flextable(audio_pgls_results) %>% add_header_lines(
values = "Table X. ") %>%
#bold(i = ~ P.val < 0.05) %>% # select columns add: j = ~ Coefficients + P.val
autofit()
flexall
library(caper)
library(phytools)
library(ape)
library(dplyr)
library(ggpubr)
library(ggplot2)
library(tidyr)
library(purrr)
#########Line 73 - scaling between ear structures##########
#########Line 173 - scaling vs head mass########
################Set up data############
#set working directory and load data
#setwd(choose.dir())
#load main dataframe
df<-read.csv("databmadded.csv", stringsAsFactors = F, header = T) #, stringsAsFactors = FALSE
#The pgls model function, which will be applied to list of formulas
pgls_models<-function(i){
pglsfit<-pgls(as.formula(i), data = birdCDO, #check comparative data object here<---
lambda = 'ML', #find lambda using maximum likelihood
bounds = list(lambda=c(0.01,1)))#####
}
#Load phylogeny and correct names that were different between birdtree.org and the up-to-date species names
source("load phylogeny and make CDO.R")
#Some missing headmass values to be imputed using PGLS of skull width and head mass
#Computed head mass from head mass~skullwidth pgls
df$HM#without imputed values
source("SW_HM_.R")#
df$HM#with imputed values
#Since PGLS uses one point per species,I make the dataframe to have average values for species with more than one specimen:
#First I make a dataframe with only one species per line
distinctdf<-distinct(df, Binomial, .keep_all = TRUE)
distinctdforder<-arrange(distinctdf,Binomial)#sort by species name
#Next get averages by species for columns with continuous data
avgdf<-df %>% group_by(Binomial) %>%
summarise_at(vars(Skull.width..mm.:TM_FP),mean, na.rm = TRUE)
avgdf<-as.data.frame(avgdf)
#Columns from the distinctdf dataframe which don't require averaging are added back
avgdf$Species<-distinctdforder$Species
avgdf$Low.Hz<-distinctdforder$Low.Hz
avgdf$Order<-distinctdforder$Order
avgdf$Family<-distinctdforder$Family
avgdf$Category<-as.character(distinctdforder$Category)
avgdf$birdtree<-gsub(" ","_",distinctdforder$Birdtree)
avgdf$BM_lit<-distinctdforder$BM_lit
avgdf$aud_spp<-distinctdforder$spp_audio
avgdf$aud_rel<-distinctdforder$audio_relation
avgdf$aud_spp<-distinctdforder$spp_audio
#make comparative data frame object
birdCDO<-comparative.data(phy = birdtreels,data = avgdf,#[avgdf$Category!="Terrestrial",]
names.col = Binomial,
vcv = TRUE, na.omit = FALSE,
warn.dropped = TRUE)
#check any tips dropped between linking phylogeny and dataframe
birdCDO$dropped
######If doing audiogram analyses, you can now proceed to
######'Audiograms linked to anatomy.R'
######Other
pgls_todo_hm<- c("log(TM_FP)~log(HM)",
"log(COffset)~log(HM)",
"log(UH)~log(HM)",
"log(TMA)~log(HM)",
"log(ECD)~log(HM)",
"log(TM)~log(HM)",#
"log(FP)~log(HM)",#
"log(RW)~log(HM)",
"log(ES)~log(HM)",
"log(Air)~log(HM)",#
"log(CL)~log(HM)",
"log(CV)~log(HM)")
####list of expected geometric coefficients for___###
geomcoefs<-c(0,#impedance-matching
0.33,
0.33,
0,
0.33,#auditory endorgan
0.67,#input/output areas
0.67,
0.67,
0.33,#stiffness
1,
0.33,#columella size
1)
#######functional category list
categorylist<-c(rep("Impedance matching",4),
"Auditory endorgan length",
rep("Input/output areas",3),
rep("Stiffness",2),
rep("Columella size",2))
#creates list of model outputs 'pgls_model_list'
#dataframe with results 'hm'
source("pgls_HM.R")
#################formatting table
#remove intercept estimates, drop model column,
#only keep significant relationships
#combine estimate +/- 95 CI into one cell
hm$pglsslope<-paste0(hm$Estimate," (",
format(round(hm$CI95_low, 3), nsmall = 3),
",",
format(round(hm$CI95_high, 3), nsmall = 3),
")")
#split up the model formula to get x and y components
splitmodel<-strsplit(hm$Model,"~")
hm$ymodel<-map(splitmodel,1)#left side of formula
# remove the "log" from each character string
hm$ymodel_nolog<-numeric()
for(i in seq_along(hm$ymodel)){
hm$ymodel_nolog[i]<-gsub("[\\(\\)]", "", regmatches(hm$ymodel, gregexpr("\\(.*?\\)", hm$ymodel))[[i]])
}
options(scipen = 100, digits = 2)
hm<-hm %>% select(category, ymodel_nolog,Coefficients,
geometric_exp, pglsslope,scalingtype,Adj_Rsquared,pval, Lambda) %>%
filter(Coefficients!="(Intercept)")
# remove the "log" from 'Coefficients'
#hm$xmodel_nolog<-numeric()
for(i in seq_along(hm$Coefficients)){
hm$Coefficients[i]<-gsub("[\\(\\)]", "", regmatches(hm$Coefficients, gregexpr("\\(.*?\\)", hm$Coefficients))[[i]])
}
#sort table by category and then adjusted R2
hm$category<-as.factor(hm$category)
hm<-arrange(hm,factor(hm$category, levels = c(
"Columella size",
"Auditory endorgan length",
"Input/output areas",
"Stiffness",
"Impedance match")),desc(Adj_Rsquared))
hm$pval<-format(round(hm$pval, 3), nsmall = 3)
####visualize the table better using the flextable package
flexall<-flextable(hm) %>%
add_header_lines( values = "Table X. Models for selection") %>%
autofit()
flexall
####scaling vs head mass########
#list of pgls models to run (only models with head mass are used)
pgls_todo_hm<- c("log(TM_FP)~log(HM)",
"log(COffset)~log(HM)",
"log(UH)~log(HM)",
"log(TMA)~log(HM)",
"log(ECD)~log(HM)",
"log(TM)~log(HM)",#
"log(FP)~log(HM)",#
"log(RW)~log(HM)",
"log(ES)~log(HM)",
"log(Air)~log(HM)",#
"log(CL)~log(HM)",
"log(CV)~log(HM)")
####list of expected geometric coefficients for___###
geomcoefs<-c(0,#impedance-matching
0.33,
0.33,
0,
0.33,#auditory endorgan
0.67,#input/output areas
0.67,
0.67,
0.33,#stiffness
1,
0.33,#columella size
1)
#######functional category list
categorylist<-c(rep("Impedance matching",4),
"Auditory endorgan length",
rep("Input/output areas",3),
rep("Stiffness",2),
rep("Columella size",2))
#creates list of model outputs 'pgls_model_list'
#dataframe with results 'hm'
source("pgls_HM.R")
#################formatting table
#remove intercept estimates, drop model column,
#only keep significant relationships
#combine estimate +/- 95 CI into one cell
hm$pglsslope<-paste0(hm$Estimate," (",
format(round(hm$CI95_low, 3), nsmall = 3),
",",
format(round(hm$CI95_high, 3), nsmall = 3),
")")
#split up the model formula to get x and y components
splitmodel<-strsplit(hm$Model,"~")
hm$ymodel<-map(splitmodel,1)#left side of formula
# remove the "log" from each character string
hm$ymodel_nolog<-numeric()
for(i in seq_along(hm$ymodel)){
hm$ymodel_nolog[i]<-gsub("[\\(\\)]", "", regmatches(hm$ymodel, gregexpr("\\(.*?\\)", hm$ymodel))[[i]])
}
options(scipen = 100, digits = 2)
hm<-hm %>% select(category, ymodel_nolog,Coefficients,
geometric_exp, pglsslope,scalingtype,Adj_Rsquared,pval, Lambda) %>%
filter(Coefficients!="(Intercept)")
# remove the "log" from 'Coefficients'
#hm$xmodel_nolog<-numeric()
for(i in seq_along(hm$Coefficients)){
hm$Coefficients[i]<-gsub("[\\(\\)]", "", regmatches(hm$Coefficients, gregexpr("\\(.*?\\)", hm$Coefficients))[[i]])
}
#sort table by category and then adjusted R2
hm$category<-as.factor(hm$category)
hm<-arrange(hm,factor(hm$category, levels = c(
"Columella size",
"Auditory endorgan length",
"Input/output areas",
"Stiffness",
"Impedance match")),desc(Adj_Rsquared))
hm$pval<-format(round(hm$pval, 3), nsmall = 3)
####visualize the table better using the flextable package
flexall<-flextable(hm) %>%
add_header_lines( values = "Table X. Models for selection") %>%
autofit()
flexall
hm$tval
####scaling vs head mass########
#list of pgls models to run (only models with head mass are used)
pgls_todo_hm<- c("log(TM_FP)~log(HM)",
"log(COffset)~log(HM)",
"log(UH)~log(HM)",
"log(TMA)~log(HM)",
"log(ECD)~log(HM)",
"log(TM)~log(HM)",#
"log(FP)~log(HM)",#
"log(RW)~log(HM)",
"log(ES)~log(HM)",
"log(Air)~log(HM)",#
"log(CL)~log(HM)",
"log(CV)~log(HM)")
####list of expected geometric coefficients for___###
geomcoefs<-c(0,#impedance-matching
0.33,
0.33,
0,
0.33,#auditory endorgan
0.67,#input/output areas
0.67,
0.67,
0.33,#stiffness
1,
0.33,#columella size
1)
#######functional category list
categorylist<-c(rep("Impedance matching",4),
"Auditory endorgan length",
rep("Input/output areas",3),
rep("Stiffness",2),
rep("Columella size",2))
#creates list of model outputs 'pgls_model_list'
#dataframe with results 'hm'
source("pgls_HM.R")
#################formatting table
#remove intercept estimates, drop model column,
#only keep significant relationships
#combine estimate +/- 95 CI into one cell
hm$pglsslope<-paste0(hm$Estimate," (",
format(round(hm$CI95_low, 3), nsmall = 3),
",",
format(round(hm$CI95_high, 3), nsmall = 3),
")")
#split up the model formula to get x and y components
splitmodel<-strsplit(hm$Model,"~")
hm$ymodel<-map(splitmodel,1)#left side of formula
# remove the "log" from each character string
hm$ymodel_nolog<-numeric()
for(i in seq_along(hm$ymodel)){
hm$ymodel_nolog[i]<-gsub("[\\(\\)]", "", regmatches(hm$ymodel, gregexpr("\\(.*?\\)", hm$ymodel))[[i]])
}
options(scipen = 100, digits = 2)
hm<-hm %>% select(category, ymodel_nolog,Coefficients,
geometric_exp, pglsslope,scalingtype,Adj_Rsquared,pval, Lambda) %>%
filter(Coefficients!="(Intercept)")
# remove the "log" from 'Coefficients'
#hm$xmodel_nolog<-numeric()
for(i in seq_along(hm$Coefficients)){
hm$Coefficients[i]<-gsub("[\\(\\)]", "", regmatches(hm$Coefficients, gregexpr("\\(.*?\\)", hm$Coefficients))[[i]])
}
#sort table by category and then adjusted R2
hm$category<-as.factor(hm$category)
hm<-arrange(hm,factor(hm$category, levels = c(
"Columella size",
"Auditory endorgan length",
"Input/output areas",
"Stiffness",
"Impedance match")),desc(Adj_Rsquared))
hm$pval<-format(round(hm$pval, 3), nsmall = 3)
####visualize the table better using the flextable package
flexall<-flextable(hm) %>%
add_header_lines( values = "Table X. Models for selection") %>%
autofit()
flexall
#options(scipen = 100)
library(flextable)
library(officer)
#pgls_todo_hm<-pgls_todo_nogeomet[seq(2,length(pgls_todo_nogeomet),2)]
#Head mass only
modellist<-pgls_todo_hm
pgls_models_list<-lapply(modellist,pgls_models)#run pgls
#make list of dataframes with the PGLS outputs.
tbllist_HM<-list()
for (i in seq_along(pgls_models_list)){#change th 'Model' colume in this as appropriate
tbllist_HM[[i]]<-as.data.frame(summary(pgls_models_list[[i]])$'coefficients')
tbllist_HM[[i]]$Adj_Rsquared<-summary(pgls_models_list[[i]])$'adj.r.squared'[1]#rsquared
tbllist_HM[[i]]$Model<-modellist[i]#formula<_____________________CHECK FORMULA LIST HERE is correct
tbllist_HM[[i]]$Lambda<-summary(pgls_models_list[[i]])$'param'[[2]]#lambda
tbllist_HM[[i]]$Fstat<-summary(pgls_models_list[[i]])$fstatistic[1]
tbllist_HM[[i]]$Fstat_numdf<-summary(pgls_models_list[[i]])$fstatistic[2]
tbllist_HM[[i]]$Fstat_dendf<-summary(pgls_models_list[[i]])$fstatistic[3]
tbllist_HM[[i]]$AICc<-pgls_models_list[[i]]$aicc[1]
tbllist_HM[[i]]$T_1<-(coef(pgls_models_list[[i]])[2]-1)/pgls_models_list[[i]]$sterr[2]
tbllist_HM[[i]]$T_0<-(coef(pgls_models_list[[i]])[2]-0)/pgls_models_list[[i]]$sterr[2]
tbllist_HM[[i]]$p_slope_re_1<- 2*pt(abs(tbllist_HM[[i]]$T_1), pgls_models_list[[i]]$n-2, lower.tail = FALSE)
tbllist_HM[[i]]$p_slope_re_0<- 2*pt(abs(tbllist_HM[[i]]$T_0), pgls_models_list[[i]]$n-2, lower.tail = FALSE)
}
#organize the dataframe table (significant digist, remove redundant F stat & R squared)
for(i in seq_along(tbllist_HM)){
tbllist_HM[[i]]$Coefficients<-row.names(tbllist_HM[[i]])
tbllist_HM[[i]]$Coefficients<-gsub('[[:digit:]]+', '', tbllist_HM[[i]]$Coefficients)#regex to remove number automatically added during the loop
#identify numeric cols and character cols to apply the significant digits function
character_cols<-unlist(lapply(tbllist_HM[[i]], is.character))
numeric_cols <- unlist(lapply(tbllist_HM[[i]], is.numeric))# Identify numeric columns
tbllist_HM[[i]]<-cbind(tbllist_HM[[i]][,which(character_cols)],signif(tbllist_HM[[i]][,which(numeric_cols)], digits = 2))
#tbllist_HM[[i]] <- tbllist_HM[[i]][, c(6,11,8:10,7,5,1:4)]#change order of columns
#dplyr::select_if(tbllist_HM[[i]], is.numeric)#select only numeric data
colnames(tbllist_HM[[i]])[6]<-"P.val"#rename b/c flextable doesn't work will with the '>' sign
row.names(tbllist_HM[[i]])<-c()#remove row names
print(tbllist_HM[[i]])
}
hm<-do.call(rbind.data.frame,tbllist_HM)
hm$CI95_low<-hm$Estimate-hm$`Std. Error`*1.96
hm$CI95_high<-hm$Estimate+hm$`Std. Error`*1.96
hm$geometric_exp<-rep(geomcoefs,each =2)
hm$category<-rep(categorylist,each = 2)
hm$scalingtype<-ifelse(hm$CI95_high<hm$geometric_exp,"Hypo",
"other")
hm$scalingtype<-ifelse(hm$CI95_low>hm$geometric_exp,"Hyper",
hm$scalingtype)
hm$scalingtype<-ifelse(hm$CI95_high>hm$geometric_exp&hm$CI95_low<hm$geometric_exp,"Iso",
hm$scalingtype)
hm$tval<-(hm$Estimate-hm$geometric_exp)/hm$`Std. Error`#t-value of differnce between estimate and isometric slope
hm$pval<-2*pt(abs(hm$tval),df=hm$Fstat_dendf, lower.tail = FALSE)#two tailed p-val
#hm$pval<-round(hm$pval,digits = 5)
hm$tval
hm$Estimate