-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathtrain.py
285 lines (225 loc) · 10.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
import time
import os
import numpy as np
import configure as c
import pandas as pd
from DB_wav_reader import read_feats_structure
from SR_Dataset import read_MFB, TruncatedInputfromMFB, ToTensorInput, ToTensorDevInput, DvectorDataset, collate_fn_feat_padded
from model.model import background_resnet
import matplotlib.pyplot as plt
def load_dataset(val_ratio):
# Load training set and validation set
# Split training set into training set and validation set according to "val_ratio"
train_DB, valid_DB = split_train_dev(c.TRAIN_FEAT_DIR, val_ratio)
file_loader = read_MFB # numpy array:(n_frames, n_dims)
transform = transforms.Compose([
TruncatedInputfromMFB(), # numpy array:(1, n_frames, n_dims)
ToTensorInput() # torch tensor:(1, n_dims, n_frames)
])
transform_T = ToTensorDevInput()
speaker_list = sorted(set(train_DB['speaker_id'])) # len(speaker_list) == n_speakers
spk_to_idx = {spk: i for i, spk in enumerate(speaker_list)}
train_dataset = DvectorDataset(DB=train_DB, loader=file_loader, transform=transform, spk_to_idx=spk_to_idx)
valid_dataset = DvectorDataset(DB=valid_DB, loader=file_loader, transform=transform_T, spk_to_idx=spk_to_idx)
n_classes = len(speaker_list) # How many speakers? 240
return train_dataset, valid_dataset, n_classes
def split_train_dev(train_feat_dir, valid_ratio):
train_valid_DB = read_feats_structure(train_feat_dir)
total_len = len(train_valid_DB) # 148642
valid_len = int(total_len * valid_ratio/100.)
train_len = total_len - valid_len
shuffled_train_valid_DB = train_valid_DB.sample(frac=1).reset_index(drop=True)
# Split the DB into train and valid set
train_DB = shuffled_train_valid_DB.iloc[:train_len]
valid_DB = shuffled_train_valid_DB.iloc[train_len:]
# Reset the index
train_DB = train_DB.reset_index(drop=True)
valid_DB = valid_DB.reset_index(drop=True)
print('\nTraining set %d utts (%0.1f%%)' %(train_len, (train_len/total_len)*100))
print('Validation set %d utts (%0.1f%%)' %(valid_len, (valid_len/total_len)*100))
print('Total %d utts' %(total_len))
return train_DB, valid_DB
def main():
# Set hyperparameters
use_cuda = True # use gpu or cpu
val_ratio = 10 # Percentage of validation set
embedding_size = 128
start = 1 # Start epoch
n_epochs = 30 # How many epochs?
end = start + n_epochs # Last epoch
lr = 1e-1 # Initial learning rate
wd = 1e-4 # Weight decay (L2 penalty)
optimizer_type = 'sgd' # ex) sgd, adam, adagrad
batch_size = 64 # Batch size for training
valid_batch_size = 16 # Batch size for validation
use_shuffle = True # Shuffle for training or not
# Load dataset
train_dataset, valid_dataset, n_classes = load_dataset(val_ratio)
# print the experiment configuration
print('\nNumber of classes (speakers):\n{}\n'.format(n_classes))
log_dir = 'model_saved' # where to save checkpoints
if not os.path.exists(log_dir):
os.makedirs(log_dir)
# instantiate model and initialize weights
model = background_resnet(embedding_size=embedding_size, num_classes=n_classes)
if use_cuda:
model.cuda()
# define loss function (criterion), optimizer and scheduler
criterion = nn.CrossEntropyLoss()
optimizer = create_optimizer(optimizer_type, model, lr, wd)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=2, min_lr=1e-4, verbose=1)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=use_shuffle)
valid_loader = torch.utils.data.DataLoader(dataset=valid_dataset,
batch_size=valid_batch_size,
shuffle=False,
collate_fn = collate_fn_feat_padded)
# to track the average training loss per epoch as the model trains
avg_train_losses = []
# to track the average validation loss per epoch as the model trains
avg_valid_losses = []
for epoch in range(start, end):
# train for one epoch
train_loss = train(train_loader, model, criterion, optimizer, use_cuda, epoch, n_classes)
# evaluate on validation set
valid_loss = validate(valid_loader, model, criterion, use_cuda, epoch)
scheduler.step(valid_loss, epoch)
# calculate average loss over an epoch
avg_train_losses.append(train_loss)
avg_valid_losses.append(valid_loss)
# do checkpointing
torch.save({'epoch': epoch + 1, 'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict()},
'{}/checkpoint_{}.pth'.format(log_dir, epoch))
# find position of lowest validation loss
minposs = avg_valid_losses.index(min(avg_valid_losses))+1
print('Lowest validation loss at epoch %d' %minposs)
# visualize the loss and learning rate as the network trained
visualize_the_losses(avg_train_losses, avg_valid_losses)
def train(train_loader, model, criterion, optimizer, use_cuda, epoch, n_classes):
batch_time = AverageMeter()
losses = AverageMeter()
train_acc = AverageMeter()
n_correct, n_total = 0, 0
log_interval = 84
# switch to train mode
model.train()
end = time.time()
# pbar = tqdm(enumerate(train_loader))
for batch_idx, (data) in enumerate(train_loader):
inputs, targets = data # target size:(batch size,1), input size:(batch size, 1, dim, win)
targets = targets.view(-1) # target size:(batch size)
current_sample = inputs.size(0) # batch size
if use_cuda:
inputs = inputs.cuda()
targets = targets.cuda()
_, output = model(inputs) # out size:(batch size, #classes), for softmax
# calculate accuracy of predictions in the current batch
n_correct += (torch.max(output, 1)[1].long().view(targets.size()) == targets).sum().item()
n_total += current_sample
train_acc_temp = 100. * n_correct / n_total
train_acc.update(train_acc_temp, inputs.size(0))
loss = criterion(output, targets)
losses.update(loss.item(), inputs.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if batch_idx % log_interval == 0:
print(
'Train Epoch: {:3d} [{:8d}/{:8d} ({:3.0f}%)]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.avg:.4f}\t'
'Acc {train_acc.avg:.4f}'.format(
epoch, batch_idx * len(inputs), len(train_loader.dataset),
100. * batch_idx / len(train_loader),
batch_time=batch_time, loss=losses, train_acc=train_acc))
return losses.avg
def validate(val_loader, model, criterion, use_cuda, epoch):
batch_time = AverageMeter()
losses = AverageMeter()
val_acc = AverageMeter()
n_correct, n_total = 0, 0
# switch to evaluate mode
model.eval()
with torch.no_grad():
end = time.time()
for i, (data) in enumerate(val_loader):
inputs, targets = data
current_sample = inputs.size(0) # batch size
if use_cuda:
inputs = inputs.cuda()
targets = targets.cuda()
# compute output
_, output = model(inputs)
# measure accuracy and record loss
n_correct += (torch.max(output, 1)[1].long().view(targets.size()) == targets).sum().item()
n_total += current_sample
val_acc_temp = 100. * n_correct / n_total
val_acc.update(val_acc_temp, inputs.size(0))
loss = criterion(output, targets)
losses.update(loss.item(), inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
print(' * Validation: '
'Loss {loss.avg:.4f}\t'
'Acc {val_acc.avg:.4f}'.format(
loss=losses, val_acc=val_acc))
return losses.avg
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def create_optimizer(optimizer, model, new_lr, wd):
# setup optimizer
if optimizer == 'sgd':
optimizer = optim.SGD(model.parameters(), lr=new_lr,
momentum=0.9, dampening=0,
weight_decay=wd)
elif optimizer == 'adam':
optimizer = optim.Adam(model.parameters(), lr=new_lr,
weight_decay=wd)
elif optimizer == 'adagrad':
optimizer = optim.Adagrad(model.parameters(),
lr=new_lr,
weight_decay=wd)
return optimizer
def visualize_the_losses(train_loss, valid_loss):
# https://github.com/Bjarten/early-stopping-pytorch/blob/master/MNIST_Early_Stopping_example.ipynb
# visualize the loss as the network trained
fig = plt.figure(figsize=(10,8))
plt.plot(range(1,len(train_loss)+1),train_loss, label='Training Loss')
plt.plot(range(1,len(valid_loss)+1),valid_loss, label='Validation Loss')
# find position of lowest validation loss
minposs = valid_loss.index(min(valid_loss))+1
plt.axvline(minposs, linestyle='--', color='r',label='Early Stopping Checkpoint')
plt.xlabel('epochs')
plt.ylabel('loss')
plt.ylim(0, 3.5) # consistent scale
plt.xlim(0, len(train_loss)+1) # consistent scale
plt.grid(True)
plt.legend()
plt.tight_layout()
#plt.show()
fig.savefig('loss_plot.png', bbox_inches='tight')
if __name__ == '__main__':
main()