-
Notifications
You must be signed in to change notification settings - Fork 230
/
Copy pathgraphics-for-communication.Rmd
425 lines (331 loc) · 11.4 KB
/
graphics-for-communication.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
# Graphics for communication {#graphics-for-communication .r4ds-section}
## Introduction {#introduction-19 .r4ds-section}
```{r setup,message=FALSE,cache=FALSE}
library("tidyverse")
library("modelr")
library("lubridate")
```
## Label {#label .r4ds-section}
### Exercise 28.2.1 {.unnumbered .exercise data-number="28.2.1"}
<div class="question">
Create one plot on the fuel economy data with customized `title`,
`subtitle`, `caption`, `x`, `y`, and `colour` labels.
</div>
<div class="answer">
```{r}
ggplot(
data = mpg,
mapping = aes(x = fct_reorder(class, hwy), y = hwy)
) +
geom_boxplot() +
coord_flip() +
labs(
title = "Compact Cars have > 10 Hwy MPG than Pickup Trucks",
subtitle = "Comparing the median highway mpg in each class",
caption = "Data from fueleconomy.gov",
x = "Car Class",
y = "Highway Miles per Gallon"
)
```
</div>
### Exercise 28.2.2 {.unnumbered .exercise data-number="28.2.2"}
<div class="question">
The `geom_smooth()` is somewhat misleading because the `hwy` for large engines is skewed upwards due to the inclusion of lightweight sports cars with big engines.
Use your modeling tools to fit and display a better model.
</div>
<div class="answer">
First, I'll plot the relationship between fuel efficiency and engine size (displacement) using all cars.
The plot shows a strong negative relationship.
```{r}
ggplot(mpg, aes(displ, hwy)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE) +
labs(
title = "Fuel Efficiency Decreases with Engine Size",
caption = "Data from fueleconomy.gov",
y = "Highway Miles per Gallon",
x = "Engine Displacement"
)
```
However, if I disaggregate by car class, and plot the relationship between
fuel efficiency and engine displacement within each class, I see a different
relationship.
1. For all car class except subcompact cars, there is no relationship or only
a small negative relationship between fuel efficiency and engine size.
1. For subcompact cars, there is a strong negative relationship between fuel
efficiency and engine size. As the question noted, this is because the
subcompact car class includes both small cheap cars, and sports cars with
large engines.
```{r}
ggplot(mpg, aes(displ, hwy, colour = class)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE) +
labs(
title = "Fuel Efficiency Mostly Varies by Car Class",
subtitle = "Subcompact caries fuel efficiency varies by engine size",
caption = "Data from fueleconomy.gov",
y = "Highway Miles per Gallon",
x = "Engine Displacement"
)
```
Another way to model and visualize the relationship between fuel efficiency
and engine displacement after accounting for car class is to regress
fuel efficiency on car class, and plot the residuals of that regression against
engine displacement.
The residuals of the first regression are the variation in fuel efficiency
not explained by engine displacement.
The relationship between fuel efficiency and engine displacement is attenuated
after accounting for car class.
```{r}
mod <- lm(hwy ~ class, data = mpg)
mpg %>%
add_residuals(mod) %>%
ggplot(aes(x = displ, y = resid)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE) +
labs(
title = "Engine size has little effect on fuel efficiency",
subtitle = "After accounting for car class",
caption = "Data from fueleconomy.gov",
y = "Highway MPG Relative to Class Average",
x = "Engine Displacement"
)
```
</div>
### Exercise 28.2.3 {.unnumbered .exercise data-number="28.2.3"}
<div class="question">
Take an exploratory graphic that you've created in the last month, and add informative titles to make it easier for others to understand.
</div>
<div class="answer">
By its very nature, this exercise is left to readers.
</div>
## Annotations {#annotations .r4ds-section}
### Exercise 28.3.1 {.unnumbered .exercise data-number="28.3.1"}
<div class="question">
Use `geom_text()` with infinite positions to place text at the four corners of the plot.
</div>
<div class="answer">
I can use similar code as the example in the text.
However, I need to use `vjust` and `hjust` in order for the text to appear in the plot, and these need to be different for each corner.
But, `geom_text()` takes `hjust` and `vjust` as aesthetics, I can add them to the data and mappings, and use a single `geom_text()` call instead of four different `geom_text()` calls with four different data arguments, and four different values of `hjust` and `vjust` arguments.
```{r}
label <- tribble(
~displ, ~hwy, ~label, ~vjust, ~hjust,
Inf, Inf, "Top right", "top", "right",
Inf, -Inf, "Bottom right", "bottom", "right",
-Inf, Inf, "Top left", "top", "left",
-Inf, -Inf, "Bottom left", "bottom", "left"
)
ggplot(mpg, aes(displ, hwy)) +
geom_point() +
geom_text(aes(label = label, vjust = vjust, hjust = hjust), data = label)
```
</div>
### Exercise 28.3.2 {.unnumbered .exercise data-number="28.3.2"}
<div class="question">
Read the documentation for `annotate()`. How can you use it to add a text label to a plot without having to create a tibble?
</div>
<div class="answer">
With annotate you use what would be aesthetic mappings directly as arguments:
```{r}
ggplot(mpg, aes(displ, hwy)) +
geom_point() +
annotate("text",
x = Inf, y = Inf,
label = "Increasing engine size is \nrelated to decreasing fuel economy.", vjust = "top", hjust = "right"
)
```
</div>
### Exercise 28.3.3 {.unnumbered .exercise data-number="28.3.3"}
<div class="question">
How do labels with `geom_text()` interact with faceting?
How can you add a label to a single facet?
How can you put a different label in each facet?
(Hint: think about the underlying data.)
</div>
<div class="answer">
If the facet variable is not specified, the text is drawn in all facets.
```{r}
label <- tibble(
displ = Inf,
hwy = Inf,
label = "Increasing engine size is \nrelated to decreasing fuel economy."
)
ggplot(mpg, aes(displ, hwy)) +
geom_point() +
geom_text(aes(label = label),
data = label, vjust = "top", hjust = "right",
size = 2
) +
facet_wrap(~class)
```
To draw the label in only one facet, add a column to the label data frame with the value of the faceting variable(s) in which to draw it.
```{r}
label <- tibble(
displ = Inf,
hwy = Inf,
class = "2seater",
label = "Increasing engine size is \nrelated to decreasing fuel economy."
)
ggplot(mpg, aes(displ, hwy)) +
geom_point() +
geom_text(aes(label = label),
data = label, vjust = "top", hjust = "right",
size = 2
) +
facet_wrap(~class)
```
To draw labels in different plots, simply have the facetting variable(s):
```{r}
label <- tibble(
displ = Inf,
hwy = Inf,
class = unique(mpg$class),
label = str_c("Label for ", class)
)
ggplot(mpg, aes(displ, hwy)) +
geom_point() +
geom_text(aes(label = label),
data = label, vjust = "top", hjust = "right",
size = 3
) +
facet_wrap(~class)
```
</div>
### Exercise 28.3.4 {.unnumbered .exercise data-number="28.3.4"}
<div class="question">
What arguments to `geom_label()` control the appearance of the background box?
</div>
<div class="answer">
- `label.padding`: padding around label
- `label.r`: amount of rounding in the corners
- `label.size`: size of label border
</div>
### Exercise 28.3.5 {.unnumbered .exercise data-number="28.3.5"}
<div class="question">
What are the four arguments to `arrow()`? How do they work?
Create a series of plots that demonstrate the most important options.
</div>
<div class="answer">
The four arguments are (from the help for `arrow()`):
- `angle` : angle of arrow head
- `length` : length of the arrow head
- `ends`: ends of the line to draw arrow head
- `type`: `"open"` or `"close"`: whether the arrow head is a closed or open triangle
</div>
## Scales {#scales .r4ds-section}
### Exercise 28.4.1 {.unnumbered .exercise data-number="28.4.1"}
<div class="question">
Why doesn’t the following code override the default scale?
</div>
<div class="answer">
```{r}
df <- tibble(
x = rnorm(10000),
y = rnorm(10000)
)
ggplot(df, aes(x, y)) +
geom_hex() +
scale_colour_gradient(low = "white", high = "red") +
coord_fixed()
```
It does not override the default scale because the colors in `geom_hex()` are set by the `fill` aesthetic, not the `color` aesthetic.
```{r}
ggplot(df, aes(x, y)) +
geom_hex() +
scale_fill_gradient(low = "white", high = "red") +
coord_fixed()
```
</div>
### Exercise 28.4.2 {.unnumbered .exercise data-number="28.4.2"}
<div class="question">
The first argument to every scale is the label for the scale.
It is equivalent to using the `labs` function.
</div>
<div class="answer">
```{r}
ggplot(mpg, aes(displ, hwy)) +
geom_point(aes(colour = class)) +
geom_smooth(se = FALSE) +
labs(
x = "Engine displacement (L)",
y = "Highway fuel economy (mpg)",
colour = "Car type"
)
```
```{r}
ggplot(mpg, aes(displ, hwy)) +
geom_point(aes(colour = class)) +
geom_smooth(se = FALSE) +
scale_x_continuous("Engine displacement (L)") +
scale_y_continuous("Highway fuel economy (mpg)") +
scale_colour_discrete("Car type")
```
</div>
### Exercise 28.4.3 {.unnumbered .exercise data-number="28.4.3"}
<div class="question">
Change the display of the presidential terms by:
1. Combining the two variants shown above.
1. Improving the display of the y axis.
1. Labeling each term with the name of the president.
1. Adding informative plot labels.
1. Placing breaks every 4 years (this is trickier than it seems!).
</div>
<div class="answer">
```{r}
fouryears <- lubridate::make_date(seq(year(min(presidential$start)),
year(max(presidential$end)),
by = 4
), 1, 1)
presidential %>%
mutate(
id = 33 + row_number(),
name_id = fct_inorder(str_c(name, " (", id, ")"))
) %>%
ggplot(aes(start, name_id, colour = party)) +
geom_point() +
geom_segment(aes(xend = end, yend = name_id)) +
scale_colour_manual("Party", values = c(Republican = "red", Democratic = "blue")) +
scale_y_discrete(NULL) +
scale_x_date(NULL,
breaks = presidential$start, date_labels = "'%y",
minor_breaks = fouryears
) +
ggtitle("Terms of US Presdients",
subtitle = "Roosevelth (34th) to Obama (44th)"
) +
theme(
panel.grid.minor = element_blank(),
axis.ticks.y = element_blank()
)
```
To include both the start dates of presidential terms and every
four years, I use different levels of emphasis.
The presidential term start years are used as major breaks with thicker lines and x-axis labels.
Lines for every four years is indicated with minor breaks that use thinner lines to distinguish them from presidential term start years and to avoid cluttering the plot.
</div>
### Exercise 28.4.4 {.unnumbered .exercise data-number="28.4.4"}
<div class="question">
Use `override.aes` to make the legend on the following plot easier to see.
</div>
<div class="answer">
```{r}
ggplot(diamonds, aes(carat, price)) +
geom_point(aes(colour = cut), alpha = 1 / 20)
```
The problem with the legend is that the `alpha` value make the colors hard to see. So I'll override the alpha value to make the points solid in the legend.
```{r}
ggplot(diamonds, aes(carat, price)) +
geom_point(aes(colour = cut), alpha = 1 / 20) +
theme(legend.position = "bottom") +
guides(colour = guide_legend(nrow = 1, override.aes = list(alpha = 1)))
```
</div>
## Zooming {#zooming .r4ds-section}
`r no_exercises()`
## Themes {#themes .r4ds-section}
`r no_exercises()`
## Saving your plots {#saving-your-plots .r4ds-section}
`r no_exercises()`
## Learning more {#learning-more-4 .r4ds-section}
`r no_exercises()`