forked from amosnier/sha-2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsha-256.c
226 lines (205 loc) · 7.34 KB
/
sha-256.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
#include "sha-256.h"
#define TOTAL_LEN_LEN 8
/*
* Comments from pseudo-code at https://en.wikipedia.org/wiki/SHA-2 are reproduced here.
* When useful for clarification, portions of the pseudo-code are reproduced here too.
*/
/*
* @brief Rotate a 32-bit value by a number of bits to the right.
* @param value The value to be rotated.
* @param count The number of bits to rotate by.
* @return The rotated value.
*/
static inline uint32_t right_rot(uint32_t value, unsigned int count)
{
/*
* Defined behaviour in standard C for all count where 0 < count < 32, which is what we need here.
*/
return value >> count | value << (32 - count);
}
/*
* @brief Update a hash value under calculation with a new chunk of data.
* @param h Pointer to the first hash item, of a total of eight.
* @param p Pointer to the chunk data, which has a standard length.
*
* @note This is the SHA-256 work horse.
*/
static inline void consume_chunk(uint32_t *h, const uint8_t *p)
{
unsigned i, j;
uint32_t ah[8];
/* Initialize working variables to current hash value: */
for (i = 0; i < 8; i++)
ah[i] = h[i];
/*
* The w-array is really w[64], but since we only need 16 of them at a time, we save stack by
* calculating 16 at a time.
*
* This optimization was not there initially and the rest of the comments about w[64] are kept in their
* initial state.
*/
/*
* create a 64-entry message schedule array w[0..63] of 32-bit words (The initial values in w[0..63]
* don't matter, so many implementations zero them here) copy chunk into first 16 words w[0..15] of the
* message schedule array
*/
uint32_t w[16];
/* Compression function main loop: */
for (i = 0; i < 4; i++) {
for (j = 0; j < 16; j++) {
if (i == 0) {
w[j] =
(uint32_t)p[0] << 24 | (uint32_t)p[1] << 16 | (uint32_t)p[2] << 8 | (uint32_t)p[3];
p += 4;
} else {
/* Extend the first 16 words into the remaining 48 words w[16..63] of the
* message schedule array: */
const uint32_t s0 = right_rot(w[(j + 1) & 0xf], 7) ^ right_rot(w[(j + 1) & 0xf], 18) ^
(w[(j + 1) & 0xf] >> 3);
const uint32_t s1 = right_rot(w[(j + 14) & 0xf], 17) ^
right_rot(w[(j + 14) & 0xf], 19) ^ (w[(j + 14) & 0xf] >> 10);
w[j] = w[j] + s0 + w[(j + 9) & 0xf] + s1;
}
const uint32_t s1 = right_rot(ah[4], 6) ^ right_rot(ah[4], 11) ^ right_rot(ah[4], 25);
const uint32_t ch = (ah[4] & ah[5]) ^ (~ah[4] & ah[6]);
/*
* Initialize array of round constants:
* (first 32 bits of the fractional parts of the cube roots of the first 64 primes 2..311):
*/
static const uint32_t k[] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4,
0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe,
0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f,
0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc,
0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b,
0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116,
0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7,
0xc67178f2};
const uint32_t temp1 = ah[7] + s1 + ch + k[i << 4 | j] + w[j];
const uint32_t s0 = right_rot(ah[0], 2) ^ right_rot(ah[0], 13) ^ right_rot(ah[0], 22);
const uint32_t maj = (ah[0] & ah[1]) ^ (ah[0] & ah[2]) ^ (ah[1] & ah[2]);
const uint32_t temp2 = s0 + maj;
ah[7] = ah[6];
ah[6] = ah[5];
ah[5] = ah[4];
ah[4] = ah[3] + temp1;
ah[3] = ah[2];
ah[2] = ah[1];
ah[1] = ah[0];
ah[0] = temp1 + temp2;
}
}
/* Add the compressed chunk to the current hash value: */
for (i = 0; i < 8; i++)
h[i] += ah[i];
}
/*
* Public functions. See header file for documentation.
*/
void sha_256_init(struct Sha_256 *sha_256, uint8_t hash[SIZE_OF_SHA_256_HASH])
{
sha_256->hash = hash;
sha_256->chunk_pos = sha_256->chunk;
sha_256->space_left = SIZE_OF_SHA_256_CHUNK;
sha_256->total_len = 0;
/*
* Initialize hash values (first 32 bits of the fractional parts of the square roots of the first 8 primes
* 2..19):
*/
sha_256->h[0] = 0x6a09e667;
sha_256->h[1] = 0xbb67ae85;
sha_256->h[2] = 0x3c6ef372;
sha_256->h[3] = 0xa54ff53a;
sha_256->h[4] = 0x510e527f;
sha_256->h[5] = 0x9b05688c;
sha_256->h[6] = 0x1f83d9ab;
sha_256->h[7] = 0x5be0cd19;
}
void sha_256_write(struct Sha_256 *sha_256, const void *data, size_t len)
{
sha_256->total_len += len;
/*
* The following cast is not necessary, and could even be considered as poor practice. However, it makes this
* file valid C++, which could be a good thing for some use cases.
*/
const uint8_t *p = (const uint8_t *)data;
while (len > 0) {
/*
* If the input chunks have sizes that are multiples of the calculation chunk size, no copies are
* necessary. We operate directly on the input data instead.
*/
if (sha_256->space_left == SIZE_OF_SHA_256_CHUNK && len >= SIZE_OF_SHA_256_CHUNK) {
consume_chunk(sha_256->h, p);
len -= SIZE_OF_SHA_256_CHUNK;
p += SIZE_OF_SHA_256_CHUNK;
continue;
}
/* General case, no particular optimization. */
const size_t consumed_len = len < sha_256->space_left ? len : sha_256->space_left;
memcpy(sha_256->chunk_pos, p, consumed_len);
sha_256->space_left -= consumed_len;
len -= consumed_len;
p += consumed_len;
if (sha_256->space_left == 0) {
consume_chunk(sha_256->h, sha_256->chunk);
sha_256->chunk_pos = sha_256->chunk;
sha_256->space_left = SIZE_OF_SHA_256_CHUNK;
} else {
sha_256->chunk_pos += consumed_len;
}
}
}
uint8_t *sha_256_close(struct Sha_256 *sha_256)
{
uint8_t *pos = sha_256->chunk_pos;
size_t space_left = sha_256->space_left;
uint32_t *const h = sha_256->h;
/*
* The current chunk cannot be full. Otherwise, it would already have been consumed. I.e. there is space left
* for at least one byte. The next step in the calculation is to add a single one-bit to the data.
*/
*pos++ = 0x80;
--space_left;
/*
* Now, the last step is to add the total data length at the end of the last chunk, and zero padding before
* that. But we do not necessarily have enough space left. If not, we pad the current chunk with zeroes, and add
* an extra chunk at the end.
*/
if (space_left < TOTAL_LEN_LEN) {
memset(pos, 0x00, space_left);
consume_chunk(h, sha_256->chunk);
pos = sha_256->chunk;
space_left = SIZE_OF_SHA_256_CHUNK;
}
const size_t left = space_left - TOTAL_LEN_LEN;
memset(pos, 0x00, left);
pos += left;
uint64_t len = sha_256->total_len;
pos[7] = (uint8_t)(len << 3);
len >>= 5;
int i;
for (i = 6; i >= 0; --i) {
pos[i] = (uint8_t)len;
len >>= 8;
}
consume_chunk(h, sha_256->chunk);
/* Produce the final hash value (big-endian): */
int j;
uint8_t *const hash = sha_256->hash;
for (i = 0, j = 0; i < 8; i++) {
hash[j++] = (uint8_t)(h[i] >> 24);
hash[j++] = (uint8_t)(h[i] >> 16);
hash[j++] = (uint8_t)(h[i] >> 8);
hash[j++] = (uint8_t)h[i];
}
return sha_256->hash;
}
void calc_sha_256(uint8_t hash[SIZE_OF_SHA_256_HASH], const void *input, size_t len)
{
struct Sha_256 sha_256;
sha_256_init(&sha_256, hash);
sha_256_write(&sha_256, input, len);
(void)sha_256_close(&sha_256);
}