forked from SleepyBag/Statistical-Learning-Methods
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathperceptron.py
85 lines (72 loc) · 2.69 KB
/
perceptron.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import os
import numpy as np
from matplotlib import pyplot as plt
from rich.console import Console
from rich.table import Table
import sys
from pathlib import Path
sys.path.append(str(Path(os.path.abspath(__file__)).parent.parent))
from utils import *
class Perceptron:
def __init__(self, lr=1e-1, max_iteration=2000, verbose=False):
self.lr = lr
self.verbose = verbose
self.max_iteration = max_iteration
def _trans(self, x):
return self.w @ x + self.b
def _predict(self, x):
return 1 if self._trans(x) >= 0. else -1
def fit(self, X, Y):
self.feature_size = X.shape[-1]
# define parameteres
self.w = np.random.rand(self.feature_size)
self.b = np.random.rand(1)
updated = 1
epoch = 0
# if there is mis-classified sample, train
while updated > 0 and epoch < self.max_iteration:
if self.verbose:
print(f"epoch {epoch} started...")
updated = 0
# shuffle data
perm = np.random.permutation(len(X))
for i in perm:
x, y = X[i], Y[i]
# if there is a mis-classified sample
if self._predict(x) != y:
# update the parameters
self.w += self.lr * y * x
self.b += self.lr * y
updated += 1
if self.verbose:
print(f"epoch {epoch} finishied, {updated} pieces of data mis-classified")
epoch += 1
return
def predict(self, X):
return np.apply_along_axis(self._predict, axis=-1, arr=X)
if __name__ == "__main__":
def demonstrate(X, Y, desc):
console = Console(markup=False)
perceptron = Perceptron(verbose=True)
perceptron.fit(X, Y)
# plot
plt.scatter(X[:, 0], X[:, 1], c=Y)
wbline(perceptron.w, perceptron.b)
plt.title(desc)
plt.show()
# show in table
pred = perceptron.predict(X)
table = Table('x', 'y', 'pred')
for x, y, y_hat in zip(X, Y, pred):
table.add_row(*map(str, [x, y, y_hat]))
console.print(table)
# -------------------------- Example 1 ----------------------------------------
print("Example 1:")
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
Y = np.array([1, 1, -1, -1])
demonstrate(X, Y, "Example 1")
# -------------------------- Example 2 ----------------------------------------
print("Example 2: Perceptron cannot solve a simple XOR problem")
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
Y = np.array([1, -1, -1, 1])
demonstrate(X, Y, "Example 2: Perceptron cannot solve a simple XOR problem")