-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtdnn_asym.py
50 lines (41 loc) · 1.94 KB
/
tdnn_asym.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import torch
import torch.nn as nn
from torch.nn.utils import weight_norm
__author__ = 'Jonas Van Der Donckt'
class TDNN_ASYM(nn.Module):
def __init__(self, input_channels: int, output_channels: int, context: list):
"""
Implementation of a TDNN layer which uses weight masking to create non symmetric convolutions
:param input_channels: The number of input channels
:param output_channels: The number of channels produced by the temporal convolution
:param context: The temporal context
"""
super(TDNN_ASYM, self).__init__()
# create the convolution mask
self.conv_mask = self._create_conv_mask(context)
# TDNN convolution
self.temporal_conv = weight_norm(nn.Conv1d(input_channels, output_channels,
kernel_size=self.conv_mask.size()[0]))
# expand the mask and register a hook to zero gradients during backprop
self.conv_mask = self.conv_mask.expand_as(self.temporal_conv.weight)
self.temporal_conv.weight.register_backward_hook(lambda grad: grad * self.conv_mask)
def forward(self, x):
"""
:param x: is one batch of data, x.size(): [batch_size, input_channels, sequence_length]
sequence length is the dimension of the arbitrary length data
:return: [batch_size, output_dim, sequence_length - kernel_size + 1]
"""
return self.temporal_conv(x)
@staticmethod
def _create_conv_mask(context: list) -> torch.Tensor:
"""
:param context: The temporal context
TODO some more exlanation about the convolution
:return: The convolutional mask
"""
context = sorted(context)
min_pos, max_pos = context[0], context[-1]
mask = torch.zeros(size=(max_pos - min_pos + 1,), dtype=torch.int8)
context = list(map(lambda x: x-min_pos, context))
mask[context] = 1
return mask