Skip to content

Latest commit

 

History

History
50 lines (38 loc) · 938 Bytes

README.md

File metadata and controls

50 lines (38 loc) · 938 Bytes

PersonalROS

Personal stuff for robots

https://github.com/baegwangbin/surface_normal_uncertainty https://colab.research.google.com/drive/1HLjJORchZvzIdl8Mr_mXMYOr7-rhQygW?usp=sharing#scrollTo=TiSitL3XKvJH

Stuff NEEDED and information

EXLLAMA

  • DPopenhermes v2 7b model
  • 35 tokens per second
  • 4.5 gb vram?

SURFACE NORMAL ESTIMATION

  • small pth model
  • 0.4 seconds for 1 image?
  • 2 gb vram?(maybe less)

OPEN GROUNDING DINO T

  • 0.4 seconds for 1 image as well?
  • 3.5ish gb vram?
  • 1gb sized model

REP_VIT SAM

  • 0.2 seconds for 1 image
  • very tiny model
  • 2 gb vram

CLIP_SEG

  • low quality but 0 shot segmentation
  • 0.1 seconds per image
  • 2gb vram

LLAMA CPP PYTHON?

  • llava model for img2text
  • decent quality
  • takes time for encoding but then 30 tokens per second.

DEPTH ANYTHING HF

  • pretty small sized
  • accurate
  • 0.15 seconds?

PATH ESTIMATION

  • self implemented
  • decently accurate
  • 0.1 seconds?

probably more but idk