forked from plus007/vnodebypass
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlibdimentio.c
1065 lines (967 loc) · 39.2 KB
/
libdimentio.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* Copyright 2020 0x7ff
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "libdimentio.h"
#include <compression.h>
#include <mach-o/fat.h>
#include <mach-o/loader.h>
#include <mach-o/nlist.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <dlfcn.h>
#include <libproc.h>
#define LZSS_F (18)
#define LZSS_N (4096)
#define LZSS_THRESHOLD (2)
#define IPC_ENTRY_SZ (0x18)
#define OS_STRING_LEN_OFF (0xC)
#define KCOMP_HDR_PAD_SZ (0x16C)
#define OS_STRING_STRING_OFF (0x10)
#define IPC_SPACE_IS_TABLE_OFF (0x20)
#define IPC_ENTRY_IE_OBJECT_OFF (0x0)
#define PROC_P_LIST_LE_PREV_OFF (0x8)
#define OS_DICTIONARY_COUNT_OFF (0x14)
#define IPC_PORT_IP_KOBJECT_OFF (0x68)
#define PROC_P_LIST_LH_FIRST_OFF (0x0)
#define PREBOOT_PATH "/private/preboot/"
#define IPC_SPACE_IS_TABLE_SZ_OFF (0x14)
#define OS_DICTIONARY_DICT_ENTRY_OFF (0x20)
#define OS_STRING_LEN(a) extract32(a, 14, 18)
#define LOADED_KEXT_SUMMARY_HDR_NAME_OFF (0x10)
#define LOADED_KEXT_SUMMARY_HDR_ADDR_OFF (0x60)
#define APPLE_MOBILE_AP_NONCE_CLEAR_NONCE_SEL (0xC9)
#define APPLE_MOBILE_AP_NONCE_GENERATE_NONCE_SEL (0xC8)
#define kCFCoreFoundationVersionNumber_iOS_10_0_b5 (1348)
#define kCFCoreFoundationVersionNumber_iOS_13_0_b2 (1656)
#define kCFCoreFoundationVersionNumber_iOS_14_0_b1 (1740)
#define kCFCoreFoundationVersionNumber_iOS_11_0_b1 (1429.15)
#define kCFCoreFoundationVersionNumber_iOS_12_0_b1 (1535.13)
#define kCFCoreFoundationVersionNumber_iOS_13_0_b1 (1652.20)
#define kCFCoreFoundationVersionNumber_iOS_14_3_b1 (1770.300)
#define BOOT_PATH "/System/Library/Caches/com.apple.kernelcaches/kernelcache"
#define DER_INT (0x2U)
#define DER_SEQ (0x30U)
#define DER_IA5_STR (0x16U)
#define DER_OCTET_STR (0x4U)
#define RD(a) extract32(a, 0, 5)
#define RN(a) extract32(a, 5, 5)
#define VM_KERN_MEMORY_OSKEXT (5)
#define KCOMP_HDR_MAGIC (0x636F6D70U)
#define ADRP_ADDR(a) ((a) & ~0xFFFULL)
#define ADRP_IMM(a) (ADR_IMM(a) << 12U)
#define IO_OBJECT_NULL ((io_object_t)0)
#define ADD_X_IMM(a) extract32(a, 10, 12)
#define kIODeviceTreePlane "IODeviceTree"
#define KCOMP_HDR_TYPE_LZSS (0x6C7A7373U)
#define LDR_X_IMM(a) (sextract64(a, 5, 19) << 2U)
#define kOSBundleLoadAddressKey "OSBundleLoadAddress"
#define IS_ADR(a) (((a) & 0x9F000000U) == 0x10000000U)
#define IS_ADRP(a) (((a) & 0x9F000000U) == 0x90000000U)
#define IS_LDR_X(a) (((a) & 0xFF000000U) == 0x58000000U)
#define IS_ADD_X(a) (((a) & 0xFFC00000U) == 0x91000000U)
#define LDR_W_UNSIGNED_IMM(a) (extract32(a, 10, 12) << 2U)
#define LDR_X_UNSIGNED_IMM(a) (extract32(a, 10, 12) << 3U)
#define kBootNoncePropertyKey "com.apple.System.boot-nonce"
#define kIONVRAMDeletePropertyKey "IONVRAM-DELETE-PROPERTY"
#define IS_LDR_W_UNSIGNED_IMM(a) (((a) & 0xFFC00000U) == 0xB9400000U)
#define IS_LDR_X_UNSIGNED_IMM(a) (((a) & 0xFFC00000U) == 0xF9400000U)
#define ADR_IMM(a) ((sextract64(a, 5, 19) << 2U) | extract32(a, 29, 2))
#define kIONVRAMForceSyncNowPropertyKey "IONVRAM-FORCESYNCNOW-PROPERTY"
#ifndef SECT_CSTRING
# define SECT_CSTRING "__cstring"
#endif
#ifndef SEG_TEXT_EXEC
# define SEG_TEXT_EXEC "__TEXT_EXEC"
#endif
typedef char io_string_t[512];
typedef mach_port_t io_object_t;
typedef uint32_t IOOptionBits, ipc_entry_num_t;
typedef io_object_t io_service_t, io_connect_t, io_registry_entry_t;
typedef kern_return_t (*kernrw_0_kbase_func_t)(kaddr_t *), (*kernrw_0_kread_func_t)(kaddr_t, void *, size_t), (*kernrw_0_kwrite_func_t)(kaddr_t, const void *, size_t);
typedef int (*krw_0_kbase_func_t)(kaddr_t *), (*krw_0_kread_func_t)(kaddr_t, void *, size_t), (*krw_0_kwrite_func_t)(const void *, kaddr_t, size_t), (*kernrw_0_req_kernrw_func_t)(void);
typedef struct {
struct section_64 s64;
const char *data;
} sec_64_t;
typedef struct {
struct symtab_command cmd_symtab;
sec_64_t sec_text, sec_cstring;
kaddr_t base, kslide;
const char *kernel;
size_t kernel_sz;
char *data;
} pfinder_t;
kern_return_t
IOServiceClose(io_connect_t);
kern_return_t
IOObjectRelease(io_object_t);
CFMutableDictionaryRef
IOServiceMatching(const char *);
CFDictionaryRef
OSKextCopyLoadedKextInfo(CFArrayRef, CFArrayRef);
io_registry_entry_t
IORegistryEntryFromPath(mach_port_t, const io_string_t);
io_service_t
IOServiceGetMatchingService(mach_port_t, CFDictionaryRef);
kern_return_t
IOServiceOpen(io_service_t, task_port_t, uint32_t, io_connect_t *);
kern_return_t
IORegistryEntrySetCFProperty(io_registry_entry_t, CFStringRef, CFTypeRef);
kern_return_t
mach_vm_write(vm_map_t, mach_vm_address_t, vm_offset_t, mach_msg_type_number_t);
kern_return_t
IOConnectCallStructMethod(io_connect_t, uint32_t, const void *, size_t, void *, size_t *);
CFTypeRef
IORegistryEntryCreateCFProperty(io_registry_entry_t, CFStringRef, CFAllocatorRef, IOOptionBits);
kern_return_t
mach_vm_read_overwrite(vm_map_t, mach_vm_address_t, mach_vm_size_t, mach_vm_address_t, mach_vm_size_t *);
kern_return_t
mach_vm_machine_attribute(vm_map_t, mach_vm_address_t, mach_vm_size_t, vm_machine_attribute_t, vm_machine_attribute_val_t *);
kern_return_t
mach_vm_region(vm_map_t, mach_vm_address_t *, mach_vm_size_t *, vm_region_flavor_t, vm_region_info_t, mach_msg_type_number_t *, mach_port_t *);
extern const mach_port_t kIOMasterPortDefault;
static void *krw_0, *kernrw_0;
static kread_func_t kread_buf;
task_t tfp0 = TASK_NULL;
static kwrite_func_t kwrite_buf;
kaddr_t kbase, kslide, this_proc, our_task;
static kaddr_t kernproc;
static kernrw_0_kread_func_t kernrw_0_kread;
static kernrw_0_kwrite_func_t kernrw_0_kwrite;
static size_t proc_task_off, proc_p_pid_off, task_itk_space_off, io_dt_nvram_of_dict_off;
static uint32_t
extract32(uint32_t val, unsigned start, unsigned len) {
return (val >> start) & (~0U >> (32U - len));
}
static uint64_t
sextract64(uint64_t val, unsigned start, unsigned len) {
return (uint64_t)((int64_t)(val << (64U - len - start)) >> (64U - len));
}
static size_t
decompress_lzss(const uint8_t *src, size_t src_len, uint8_t *dst, size_t dst_len) {
const uint8_t *src_end = src + src_len, *dst_start = dst, *dst_end = dst + dst_len;
uint16_t i, r = LZSS_N - LZSS_F, flags = 0;
uint8_t text_buf[LZSS_N + LZSS_F - 1], j;
memset(text_buf, ' ', r);
while(src != src_end && dst != dst_end) {
if(((flags >>= 1U) & 0x100U) == 0) {
flags = *src++ | 0xFF00U;
if(src == src_end) {
break;
}
}
if((flags & 1U) != 0) {
text_buf[r++] = *dst++ = *src++;
r &= LZSS_N - 1U;
} else {
i = *src++;
if(src == src_end) {
break;
}
j = *src++;
i |= (j & 0xF0U) << 4U;
j = (j & 0xFU) + LZSS_THRESHOLD;
do {
*dst++ = text_buf[r++] = text_buf[i++ & (LZSS_N - 1U)];
r &= LZSS_N - 1U;
} while(j-- != 0 && dst != dst_end);
}
}
return (size_t)(dst - dst_start);
}
static const uint8_t *
der_decode(uint8_t tag, const uint8_t *der, const uint8_t *der_end, size_t *out_len) {
size_t der_len;
if(der_end - der > 2 && tag == *der++) {
if(((der_len = *der++) & 0x80U) != 0) {
*out_len = 0;
if((der_len &= 0x7FU) <= sizeof(*out_len) && (size_t)(der_end - der) >= der_len) {
while(der_len-- != 0) {
*out_len = (*out_len << 8U) | *der++;
}
}
} else {
*out_len = der_len;
}
if(*out_len != 0 && (size_t)(der_end - der) >= *out_len) {
return der;
}
}
return NULL;
}
static const uint8_t *
der_decode_seq(const uint8_t *der, const uint8_t *der_end, const uint8_t **seq_end) {
size_t der_len;
if((der = der_decode(DER_SEQ, der, der_end, &der_len)) != NULL) {
*seq_end = der + der_len;
}
return der;
}
static const uint8_t *
der_decode_uint64(const uint8_t *der, const uint8_t *der_end, uint64_t *r) {
size_t der_len;
if((der = der_decode(DER_INT, der, der_end, &der_len)) != NULL && (*der & 0x80U) == 0 && (der_len <= sizeof(*r) || (--der_len == sizeof(*r) && *der++ == 0))) {
*r = 0;
while(der_len-- != 0) {
*r = (*r << 8U) | *der++;
}
return der;
}
return NULL;
}
static void *
kdecompress(const void *src, size_t src_len, size_t *dst_len) {
const uint8_t *der, *octet, *der_end, *src_end = (const uint8_t *)src + src_len;
struct {
uint32_t magic, type, adler32, uncomp_sz, comp_sz;
uint8_t pad[KCOMP_HDR_PAD_SZ];
} kcomp_hdr;
size_t der_len;
uint64_t r;
void *dst;
if((der = der_decode_seq(src, src_end, &der_end)) != NULL && (der = der_decode(DER_IA5_STR, der, der_end, &der_len)) != NULL && der_len == 4 && (memcmp(der, "IMG4", der_len) != 0 || ((der = der_decode_seq(der + der_len, src_end, &der_end)) != NULL && (der = der_decode(DER_IA5_STR, der, der_end, &der_len)) != NULL && der_len == 4)) && memcmp(der, "IM4P", der_len) == 0 && (der = der_decode(DER_IA5_STR, der + der_len, der_end, &der_len)) != NULL && der_len == 4 && memcmp(der, "krnl", der_len) == 0 && (der = der_decode(DER_IA5_STR, der + der_len, der_end, &der_len)) != NULL && (der = der_decode(DER_OCTET_STR, der + der_len, der_end, &der_len)) != NULL && der_len > sizeof(kcomp_hdr)) {
octet = der;
memcpy(&kcomp_hdr, octet, sizeof(kcomp_hdr));
if(kcomp_hdr.magic == __builtin_bswap32(KCOMP_HDR_MAGIC)) {
if(kcomp_hdr.type == __builtin_bswap32(KCOMP_HDR_TYPE_LZSS) && (kcomp_hdr.comp_sz = __builtin_bswap32(kcomp_hdr.comp_sz)) <= der_len - sizeof(kcomp_hdr) && (kcomp_hdr.uncomp_sz = __builtin_bswap32(kcomp_hdr.uncomp_sz)) != 0 && (dst = malloc(kcomp_hdr.uncomp_sz)) != NULL) {
if(decompress_lzss(octet + sizeof(kcomp_hdr), kcomp_hdr.comp_sz, dst, kcomp_hdr.uncomp_sz) == kcomp_hdr.uncomp_sz) {
*dst_len = kcomp_hdr.uncomp_sz;
return dst;
}
free(dst);
}
} else if((der = der_decode_seq(der + der_len, src_end, &der_end)) != NULL && (der = der_decode_uint64(der, der_end, &r)) != NULL && r == 1 && der_decode_uint64(der, der_end, &r) != NULL && r != 0 && (dst = malloc(r)) != NULL) {
if(compression_decode_buffer(dst, r, octet, der_len, NULL, COMPRESSION_LZFSE) == r) {
*dst_len = r;
return dst;
}
free(dst);
}
}
return NULL;
}
static kern_return_t
kread_buf_krw_0(kaddr_t addr, void *buf, mach_vm_size_t sz) {
static krw_0_kread_func_t krw_0_kread;
return (krw_0_kread != NULL || (krw_0_kread = (krw_0_kread_func_t)dlsym(krw_0, "kread")) != NULL) && krw_0_kread(addr, buf, sz) == 0 ? KERN_SUCCESS : KERN_FAILURE;
}
static kern_return_t
kwrite_buf_krw_0(kaddr_t addr, const void *buf, mach_msg_type_number_t sz) {
static krw_0_kwrite_func_t krw_0_kwrite;
return (krw_0_kwrite != NULL || (krw_0_kwrite = (krw_0_kwrite_func_t)dlsym(krw_0, "kwrite")) != NULL) && krw_0_kwrite(buf, addr, sz) == 0 ? KERN_SUCCESS : KERN_FAILURE;
}
static kern_return_t
kread_buf_kernrw_0(kaddr_t addr, void *buf, mach_vm_size_t sz) {
return kernrw_0_kread(addr, buf, sz);
}
static kern_return_t
kwrite_buf_kernrw_0(kaddr_t addr, const void *buf, mach_msg_type_number_t sz) {
return kernrw_0_kwrite(addr, buf, sz);
}
kern_return_t
init_tfp0(void) {
kern_return_t ret = task_for_pid(mach_task_self(), 0, &tfp0);
mach_port_t host;
if(ret != KERN_SUCCESS) {
host = mach_host_self();
if(MACH_PORT_VALID(host)) {
printf("host: 0x%" PRIX32 "\n", host);
ret = host_get_special_port(host, HOST_LOCAL_NODE, 4, &tfp0);
mach_port_deallocate(mach_task_self(), host);
}
}
if(ret == KERN_SUCCESS && MACH_PORT_VALID(tfp0)) {
return ret;
}
return KERN_FAILURE;
}
kern_return_t
kread_buf_tfp0(kaddr_t addr, void *buf, mach_vm_size_t sz) {
mach_vm_address_t p = (mach_vm_address_t)buf;
mach_vm_size_t read_sz, out_sz = 0;
while(sz != 0) {
read_sz = MIN(sz, vm_kernel_page_size - (addr & vm_kernel_page_mask));
if(mach_vm_read_overwrite(tfp0, addr, read_sz, p, &out_sz) != KERN_SUCCESS || out_sz != read_sz) {
return KERN_FAILURE;
}
p += read_sz;
sz -= read_sz;
addr += read_sz;
}
return KERN_SUCCESS;
}
kern_return_t
kread_addr(kaddr_t addr, kaddr_t *val) {
return kread_buf(addr, val, sizeof(*val));
}
kern_return_t
kwrite_buf_tfp0(kaddr_t addr, const void *buf, mach_msg_type_number_t sz) {
vm_machine_attribute_val_t mattr_val = MATTR_VAL_CACHE_FLUSH;
mach_vm_address_t p = (mach_vm_address_t)buf;
mach_msg_type_number_t write_sz;
while(sz != 0) {
write_sz = (mach_msg_type_number_t)MIN(sz, vm_kernel_page_size - (addr & vm_kernel_page_mask));
if(mach_vm_write(tfp0, addr, p, write_sz) != KERN_SUCCESS || mach_vm_machine_attribute(tfp0, addr, write_sz, MATTR_CACHE, &mattr_val) != KERN_SUCCESS) {
return KERN_FAILURE;
}
p += write_sz;
sz -= write_sz;
addr += write_sz;
}
return KERN_SUCCESS;
}
static kern_return_t
find_section(const char *p, struct segment_command_64 sg64, const char *sect_name, struct section_64 *sp) {
for(; sg64.nsects-- != 0; p += sizeof(*sp)) {
memcpy(sp, p, sizeof(*sp));
if((sp->flags & SECTION_TYPE) != S_ZEROFILL) {
if(sp->offset < sg64.fileoff || sp->size > sg64.filesize || sp->offset - sg64.fileoff > sg64.filesize - sp->size) {
break;
}
if(sp->size != 0 && strncmp(sp->segname, sg64.segname, sizeof(sp->segname)) == 0 && strncmp(sp->sectname, sect_name, sizeof(sp->sectname)) == 0) {
return KERN_SUCCESS;
}
}
}
return KERN_FAILURE;
}
static void
sec_reset(sec_64_t *sec) {
memset(&sec->s64, '\0', sizeof(sec->s64));
sec->data = NULL;
}
static kern_return_t
sec_read_buf(sec_64_t sec, kaddr_t addr, void *buf, size_t sz) {
size_t off;
if(addr < sec.s64.addr || sz > sec.s64.size || (off = addr - sec.s64.addr) > sec.s64.size - sz) {
return KERN_FAILURE;
}
memcpy(buf, sec.data + off, sz);
return KERN_SUCCESS;
}
static void
pfinder_reset(pfinder_t *pfinder) {
pfinder->base = 0;
pfinder->kslide = 0;
pfinder->data = NULL;
pfinder->kernel = NULL;
pfinder->kernel_sz = 0;
sec_reset(&pfinder->sec_text);
sec_reset(&pfinder->sec_cstring);
memset(&pfinder->cmd_symtab, '\0', sizeof(pfinder->cmd_symtab));
}
static void
pfinder_term(pfinder_t *pfinder) {
free(pfinder->data);
pfinder_reset(pfinder);
}
static kern_return_t
pfinder_init_file(pfinder_t *pfinder, const char *filename) {
struct symtab_command cmd_symtab;
kern_return_t ret = KERN_FAILURE;
struct segment_command_64 sg64;
struct mach_header_64 mh64;
struct load_command lc;
struct section_64 s64;
struct fat_header fh;
struct stat stat_buf;
struct fat_arch fa;
const char *p, *e;
size_t len;
void *m;
int fd;
pfinder_reset(pfinder);
if((fd = open(filename, O_RDONLY | O_CLOEXEC)) != -1) {
if(fstat(fd, &stat_buf) != -1 && S_ISREG(stat_buf.st_mode) && stat_buf.st_size > 0) {
len = (size_t)stat_buf.st_size;
if((m = mmap(NULL, len, PROT_READ, MAP_PRIVATE, fd, 0)) != MAP_FAILED) {
if((pfinder->data = kdecompress(m, len, &pfinder->kernel_sz)) != NULL && pfinder->kernel_sz > sizeof(fh) + sizeof(mh64)) {
pfinder->kernel = pfinder->data;
memcpy(&fh, pfinder->kernel, sizeof(fh));
if(fh.magic == __builtin_bswap32(FAT_MAGIC) && (fh.nfat_arch = __builtin_bswap32(fh.nfat_arch)) < (pfinder->kernel_sz - sizeof(fh)) / sizeof(fa)) {
for(p = pfinder->kernel + sizeof(fh); fh.nfat_arch-- != 0; p += sizeof(fa)) {
memcpy(&fa, p, sizeof(fa));
if(fa.cputype == (cpu_type_t)__builtin_bswap32(CPU_TYPE_ARM64) && (fa.offset = __builtin_bswap32(fa.offset)) < pfinder->kernel_sz && (fa.size = __builtin_bswap32(fa.size)) <= pfinder->kernel_sz - fa.offset && fa.size > sizeof(mh64)) {
pfinder->kernel_sz = fa.size;
pfinder->kernel += fa.offset;
break;
}
}
}
memcpy(&mh64, pfinder->kernel, sizeof(mh64));
if(mh64.magic == MH_MAGIC_64 && mh64.cputype == CPU_TYPE_ARM64 && mh64.filetype == MH_EXECUTE && mh64.sizeofcmds < pfinder->kernel_sz - sizeof(mh64)) {
for(p = pfinder->kernel + sizeof(mh64), e = p + mh64.sizeofcmds; mh64.ncmds-- != 0 && (size_t)(e - p) >= sizeof(lc); p += lc.cmdsize) {
memcpy(&lc, p, sizeof(lc));
if(lc.cmdsize < sizeof(lc) || (size_t)(e - p) < lc.cmdsize) {
break;
}
if(lc.cmd == LC_SEGMENT_64) {
if(lc.cmdsize < sizeof(sg64)) {
break;
}
memcpy(&sg64, p, sizeof(sg64));
if(sg64.vmsize == 0) {
continue;
}
if(sg64.nsects != (lc.cmdsize - sizeof(sg64)) / sizeof(s64) || sg64.fileoff > pfinder->kernel_sz || sg64.filesize > pfinder->kernel_sz - sg64.fileoff) {
break;
}
if(sg64.fileoff == 0 && sg64.filesize != 0) {
if(pfinder->base != 0) {
break;
}
pfinder->base = sg64.vmaddr;
printf("base: " KADDR_FMT "\n", sg64.vmaddr);
}
if(strncmp(sg64.segname, SEG_TEXT_EXEC, sizeof(sg64.segname)) == 0) {
if(find_section(p + sizeof(sg64), sg64, SECT_TEXT, &s64) != KERN_SUCCESS) {
break;
}
pfinder->sec_text.s64 = s64;
pfinder->sec_text.data = pfinder->kernel + s64.offset;
printf("sec_text_addr: " KADDR_FMT ", sec_text_off: 0x%" PRIX32 ", sec_text_sz: 0x%" PRIX64 "\n", s64.addr, s64.offset, s64.size);
} else if(strncmp(sg64.segname, SEG_TEXT, sizeof(sg64.segname)) == 0) {
if(find_section(p + sizeof(sg64), sg64, SECT_CSTRING, &s64) != KERN_SUCCESS || pfinder->kernel[s64.offset + s64.size - 1] != '\0') {
break;
}
pfinder->sec_cstring.s64 = s64;
pfinder->sec_cstring.data = pfinder->kernel + s64.offset;
printf("sec_cstring_addr: " KADDR_FMT ", sec_cstring_off: 0x%" PRIX32 ", sec_cstring_sz: 0x%" PRIX64 "\n", s64.addr, s64.offset, s64.size);
}
} else if(lc.cmd == LC_SYMTAB) {
if(lc.cmdsize != sizeof(cmd_symtab)) {
break;
}
memcpy(&cmd_symtab, p, sizeof(cmd_symtab));
printf("cmd_symtab_symoff: 0x%" PRIX32 ", cmd_symtab_nsyms: 0x%" PRIX32 ", cmd_symtab_stroff: 0x%" PRIX32 "\n", cmd_symtab.symoff, cmd_symtab.nsyms, cmd_symtab.stroff);
if(cmd_symtab.nsyms != 0 && (cmd_symtab.symoff > pfinder->kernel_sz || cmd_symtab.nsyms > (pfinder->kernel_sz - cmd_symtab.symoff) / sizeof(struct nlist_64) || cmd_symtab.stroff > pfinder->kernel_sz || cmd_symtab.strsize > pfinder->kernel_sz - cmd_symtab.stroff || cmd_symtab.strsize == 0 || pfinder->kernel[cmd_symtab.stroff + cmd_symtab.strsize - 1] != '\0')) {
break;
}
pfinder->cmd_symtab = cmd_symtab;
}
if(pfinder->base != 0 && pfinder->sec_text.s64.size != 0 && pfinder->sec_cstring.s64.size != 0 && pfinder->cmd_symtab.cmdsize != 0) {
ret = KERN_SUCCESS;
break;
}
}
}
}
munmap(m, len);
}
}
close(fd);
}
if(ret != KERN_SUCCESS) {
pfinder_term(pfinder);
}
return ret;
}
static kaddr_t
pfinder_xref_rd(pfinder_t pfinder, uint32_t rd, kaddr_t start, kaddr_t to) {
kaddr_t x[32] = { 0 };
uint32_t insn;
for(; sec_read_buf(pfinder.sec_text, start, &insn, sizeof(insn)) == KERN_SUCCESS; start += sizeof(insn)) {
if(IS_LDR_X(insn)) {
x[RD(insn)] = start + LDR_X_IMM(insn);
} else if(IS_ADR(insn)) {
x[RD(insn)] = start + ADR_IMM(insn);
} else if(IS_ADD_X(insn)) {
x[RD(insn)] = x[RN(insn)] + ADD_X_IMM(insn);
} else if(IS_LDR_W_UNSIGNED_IMM(insn)) {
x[RD(insn)] = x[RN(insn)] + LDR_W_UNSIGNED_IMM(insn);
} else if(IS_LDR_X_UNSIGNED_IMM(insn)) {
x[RD(insn)] = x[RN(insn)] + LDR_X_UNSIGNED_IMM(insn);
} else {
if(IS_ADRP(insn)) {
x[RD(insn)] = ADRP_ADDR(start) + ADRP_IMM(insn);
}
continue;
}
if(RD(insn) == rd) {
if(to == 0) {
if(x[rd] < pfinder.base) {
break;
}
return x[rd];
}
if(x[rd] == to) {
return start;
}
}
}
return 0;
}
static kaddr_t
pfinder_xref_str(pfinder_t pfinder, const char *str, uint32_t rd) {
const char *p, *e;
size_t len;
for(p = pfinder.sec_cstring.data, e = p + pfinder.sec_cstring.s64.size; p != e; p += len) {
len = strlen(p) + 1;
if(strncmp(str, p, len) == 0) {
return pfinder_xref_rd(pfinder, rd, pfinder.sec_text.s64.addr, pfinder.sec_cstring.s64.addr + (kaddr_t)(p - pfinder.sec_cstring.data));
}
}
return 0;
}
static kaddr_t
pfinder_sym(pfinder_t pfinder, const char *sym) {
const char *p, *strtab = pfinder.kernel + pfinder.cmd_symtab.stroff;
struct nlist_64 nl64;
for(p = pfinder.kernel + pfinder.cmd_symtab.symoff; pfinder.cmd_symtab.nsyms-- != 0; p += sizeof(nl64)) {
memcpy(&nl64, p, sizeof(nl64));
if(nl64.n_un.n_strx != 0 && nl64.n_un.n_strx < pfinder.cmd_symtab.strsize && (nl64.n_type & (N_STAB | N_TYPE)) == N_SECT && nl64.n_value >= pfinder.base && strcmp(strtab + nl64.n_un.n_strx, sym) == 0) {
return nl64.n_value + pfinder.kslide;
}
}
return 0;
}
static kaddr_t
pfinder_kernproc(pfinder_t pfinder) {
kaddr_t ref = pfinder_sym(pfinder, "_kernproc");
uint32_t insns[2];
if(ref != 0) {
return ref;
}
for(ref = pfinder_xref_str(pfinder, "\"Should never have an EVFILT_READ except for reg or fifo.\"", 0); sec_read_buf(pfinder.sec_text, ref, insns, sizeof(insns)) == KERN_SUCCESS; ref -= sizeof(*insns)) {
if(IS_ADRP(insns[0]) && IS_LDR_X_UNSIGNED_IMM(insns[1]) && RD(insns[1]) == 3) {
return pfinder_xref_rd(pfinder, RD(insns[1]), ref, 0);
}
}
return 0;
}
static kaddr_t
pfinder_init_kbase(pfinder_t *pfinder) {
mach_msg_type_number_t cnt = TASK_DYLD_INFO_COUNT;
kaddr_t kext_addr, kext_addr_slid;
CFDictionaryRef kexts_info, kext_info;
task_dyld_info_data_t dyld_info;
char kext_name[KMOD_MAX_NAME];
struct mach_header_64 mh64;
CFStringRef kext_name_cf;
CFNumberRef kext_addr_cf;
CFArrayRef kext_names;
struct {
uint32_t pri_prot, pri_max_prot, pri_inheritance, pri_flags;
uint64_t pri_offset;
uint32_t pri_behavior, pri_user_wired_cnt, pri_user_tag, pri_pages_resident, pri_pages_shared_now_private, pri_pages_swapped_out, pri_pages_dirtied, pri_ref_cnt, pri_shadow_depth, pri_share_mode, pri_private_pages_resident, pri_shared_pages_resident, pri_obj_id, pri_depth;
kaddr_t pri_addr;
uint64_t pri_sz;
} pri;
if(pfinder->kslide == 0) {
if(task_info(tfp0, TASK_DYLD_INFO, (task_info_t)&dyld_info, &cnt) == KERN_SUCCESS) {
pfinder->kslide = dyld_info.all_image_info_size;
}
if(pfinder->kslide == 0) {
cnt = VM_REGION_EXTENDED_INFO_COUNT;
for(pri.pri_addr = 0; proc_pidinfo(0, PROC_PIDREGIONINFO, pri.pri_addr, &pri, sizeof(pri)) == sizeof(pri); pri.pri_addr += pri.pri_sz) {
if(pri.pri_prot == VM_PROT_READ && pri.pri_user_tag == VM_KERN_MEMORY_OSKEXT) {
if(kread_buf(pri.pri_addr + LOADED_KEXT_SUMMARY_HDR_NAME_OFF, kext_name, sizeof(kext_name)) == KERN_SUCCESS) {
printf("kext_name: %s\n", kext_name);
if(kread_addr(pri.pri_addr + LOADED_KEXT_SUMMARY_HDR_ADDR_OFF, &kext_addr_slid) == KERN_SUCCESS) {
printf("kext_addr_slid: " KADDR_FMT "\n", kext_addr_slid);
if((kext_name_cf = CFStringCreateWithCStringNoCopy(kCFAllocatorDefault, kext_name, kCFStringEncodingUTF8, kCFAllocatorNull)) != NULL) {
if((kext_names = CFArrayCreate(kCFAllocatorDefault, (const void **)&kext_name_cf, 1, &kCFTypeArrayCallBacks)) != NULL) {
if((kexts_info = OSKextCopyLoadedKextInfo(kext_names, NULL)) != NULL) {
if(CFGetTypeID(kexts_info) == CFDictionaryGetTypeID() && CFDictionaryGetCount(kexts_info) == 1 && (kext_info = CFDictionaryGetValue(kexts_info, kext_name_cf)) != NULL && CFGetTypeID(kext_info) == CFDictionaryGetTypeID() && (kext_addr_cf = CFDictionaryGetValue(kext_info, CFSTR(kOSBundleLoadAddressKey))) != NULL && CFGetTypeID(kext_addr_cf) == CFNumberGetTypeID() && CFNumberGetValue(kext_addr_cf, kCFNumberSInt64Type, &kext_addr) && kext_addr_slid > kext_addr) {
pfinder->kslide = kext_addr_slid - kext_addr;
}
CFRelease(kexts_info);
}
CFRelease(kext_names);
}
CFRelease(kext_name_cf);
}
}
}
break;
}
}
}
}
if(pfinder->base + pfinder->kslide > pfinder->base && kread_buf(pfinder->base + pfinder->kslide, &mh64, sizeof(mh64)) == KERN_SUCCESS && mh64.magic == MH_MAGIC_64 && mh64.cputype == CPU_TYPE_ARM64 && mh64.filetype == MH_EXECUTE) {
pfinder->sec_text.s64.addr += pfinder->kslide;
pfinder->sec_cstring.s64.addr += pfinder->kslide;
printf("kbase: " KADDR_FMT ", kslide: " KADDR_FMT "\n", pfinder->base + pfinder->kslide, pfinder->kslide);
kbase = pfinder->base + pfinder->kslide;
kslide = pfinder->kslide;
return KERN_SUCCESS;
}
return KERN_FAILURE;
}
static char *
get_boot_path(void) {
size_t hash_len, path_len = sizeof(BOOT_PATH);
io_registry_entry_t chosen;
struct stat stat_buf;
const uint8_t *hash;
CFDataRef hash_cf;
char *path = NULL;
if(stat(PREBOOT_PATH, &stat_buf) != -1 && S_ISDIR(stat_buf.st_mode) && (chosen = IORegistryEntryFromPath(kIOMasterPortDefault, kIODeviceTreePlane ":/chosen")) != IO_OBJECT_NULL) {
if((hash_cf = IORegistryEntryCreateCFProperty(chosen, CFSTR("boot-manifest-hash"), kCFAllocatorDefault, kNilOptions)) != NULL) {
if(CFGetTypeID(hash_cf) == CFDataGetTypeID() && (hash_len = (size_t)CFDataGetLength(hash_cf) << 1U) != 0) {
path_len += strlen(PREBOOT_PATH) + hash_len;
if((path = malloc(path_len)) != NULL) {
memcpy(path, PREBOOT_PATH, strlen(PREBOOT_PATH));
for(hash = CFDataGetBytePtr(hash_cf); hash_len-- != 0; ) {
path[strlen(PREBOOT_PATH) + hash_len] = "0123456789ABCDEF"[(hash[hash_len >> 1U] >> ((~hash_len & 1U) << 2U)) & 0xFU];
}
}
}
CFRelease(hash_cf);
}
IOObjectRelease(chosen);
}
if(path == NULL) {
path_len = sizeof(BOOT_PATH);
path = malloc(path_len);
}
if(path != NULL) {
memcpy(path + (path_len - sizeof(BOOT_PATH)), BOOT_PATH, sizeof(BOOT_PATH));
}
return path;
}
kern_return_t
pfinder_init_offsets(void) {
kern_return_t ret = KERN_FAILURE;
pfinder_t pfinder;
char *boot_path;
proc_task_off = 0x18;
proc_p_pid_off = 0x10;
task_itk_space_off = 0x290;
io_dt_nvram_of_dict_off = 0xC0;
if(kCFCoreFoundationVersionNumber >= kCFCoreFoundationVersionNumber_iOS_10_0_b5) {
task_itk_space_off = 0x300;
if(kCFCoreFoundationVersionNumber >= kCFCoreFoundationVersionNumber_iOS_11_0_b1) {
task_itk_space_off = 0x308;
if(kCFCoreFoundationVersionNumber >= kCFCoreFoundationVersionNumber_iOS_12_0_b1) {
proc_task_off = 0x10;
proc_p_pid_off = 0x60;
task_itk_space_off = 0x300;
if(kCFCoreFoundationVersionNumber >= kCFCoreFoundationVersionNumber_iOS_13_0_b1) {
task_itk_space_off = 0x320;
if(kCFCoreFoundationVersionNumber >= kCFCoreFoundationVersionNumber_iOS_13_0_b2) {
proc_p_pid_off = 0x68;
if(kCFCoreFoundationVersionNumber >= kCFCoreFoundationVersionNumber_iOS_14_0_b1) {
task_itk_space_off = 0x330;
io_dt_nvram_of_dict_off = 0xB8;
if(kCFCoreFoundationVersionNumber >= kCFCoreFoundationVersionNumber_iOS_14_3_b1) {
io_dt_nvram_of_dict_off = 0xC0;
}
}
}
}
}
}
}
if((boot_path = get_boot_path()) != NULL) {
printf("boot_path: %s\n", boot_path);
if(pfinder_init_file(&pfinder, boot_path) == KERN_SUCCESS) {
pfinder.kslide = kslide;
if(pfinder_init_kbase(&pfinder) == KERN_SUCCESS && (kernproc = pfinder_kernproc(pfinder)) != 0) {
printf("kernproc: " KADDR_FMT "\n", kernproc);
ret = KERN_SUCCESS;
}
pfinder_term(&pfinder);
}
free(boot_path);
}
return ret;
}
kern_return_t
find_task(pid_t pid, kaddr_t *task) {
pid_t cur_pid;
kaddr_t proc;
if(kread_addr(kernproc + PROC_P_LIST_LH_FIRST_OFF, &proc) == KERN_SUCCESS) {
while(proc != 0 && kread_buf(proc + proc_p_pid_off, &cur_pid, sizeof(cur_pid)) == KERN_SUCCESS) {
if(cur_pid == pid) {
this_proc = proc;
return kread_addr(proc + proc_task_off, task);
}
if(pid == 0 || kread_addr(proc + PROC_P_LIST_LE_PREV_OFF, &proc) != KERN_SUCCESS) {
break;
}
}
}
return KERN_FAILURE;
}
static kern_return_t
lookup_ipc_port(mach_port_name_t port_name, kaddr_t *ipc_port) {
ipc_entry_num_t port_idx, is_table_sz;
kaddr_t itk_space, is_table;
if(MACH_PORT_VALID(port_name) && kread_addr(our_task + task_itk_space_off, &itk_space) == KERN_SUCCESS) {
printf("itk_space: " KADDR_FMT "\n", itk_space);
if(kread_buf(itk_space + IPC_SPACE_IS_TABLE_SZ_OFF, &is_table_sz, sizeof(is_table_sz)) == KERN_SUCCESS) {
printf("is_table_sz: 0x%" PRIX32 "\n", is_table_sz);
if((port_idx = MACH_PORT_INDEX(port_name)) < is_table_sz && kread_addr(itk_space + IPC_SPACE_IS_TABLE_OFF, &is_table) == KERN_SUCCESS) {
printf("is_table: " KADDR_FMT "\n", is_table);
return kread_addr(is_table + port_idx * IPC_ENTRY_SZ + IPC_ENTRY_IE_OBJECT_OFF, ipc_port);
}
}
}
return KERN_FAILURE;
}
static kern_return_t
lookup_io_object(io_object_t object, kaddr_t *ip_kobject) {
kaddr_t ipc_port;
if(lookup_ipc_port(object, &ipc_port) == KERN_SUCCESS) {
printf("ipc_port: " KADDR_FMT "\n", ipc_port);
return kread_addr(ipc_port + IPC_PORT_IP_KOBJECT_OFF, ip_kobject);
}
return KERN_FAILURE;
}
static kern_return_t
nonce_generate(io_service_t nonce_serv) {
uint8_t nonce_d[CC_SHA384_DIGEST_LENGTH];
kern_return_t ret = KERN_FAILURE;
io_connect_t nonce_conn;
size_t nonce_d_sz;
if(IOServiceOpen(nonce_serv, mach_task_self(), 0, &nonce_conn) == KERN_SUCCESS) {
printf("nonce_conn: 0x%" PRIX32 "\n", nonce_conn);
if(IOConnectCallStructMethod(nonce_conn, APPLE_MOBILE_AP_NONCE_CLEAR_NONCE_SEL, NULL, 0, NULL, NULL) == KERN_SUCCESS) {
nonce_d_sz = sizeof(nonce_d);
ret = IOConnectCallStructMethod(nonce_conn, APPLE_MOBILE_AP_NONCE_GENERATE_NONCE_SEL, NULL, 0, nonce_d, &nonce_d_sz);
}
IOServiceClose(nonce_conn);
}
return ret;
}
static kern_return_t
get_of_dict(io_service_t nvram_serv, kaddr_t *of_dict) {
kaddr_t nvram_object;
if(lookup_io_object(nvram_serv, &nvram_object) == KERN_SUCCESS) {
printf("nvram_object: " KADDR_FMT "\n", nvram_object);
return kread_addr(nvram_object + io_dt_nvram_of_dict_off, of_dict);
}
return KERN_FAILURE;
}
static kaddr_t
lookup_key_in_os_dict(kaddr_t os_dict, const char *key) {
kaddr_t os_dict_entry_ptr, string_ptr, val = 0;
uint32_t os_dict_cnt, cur_key_len;
size_t key_len = strlen(key) + 1;
struct {
kaddr_t key, val;
} os_dict_entry;
char *cur_key;
if((cur_key = malloc(key_len)) != NULL) {
if(kread_addr(os_dict + OS_DICTIONARY_DICT_ENTRY_OFF, &os_dict_entry_ptr) == KERN_SUCCESS && os_dict_entry_ptr != 0) {
printf("os_dict_entry_ptr: " KADDR_FMT "\n", os_dict_entry_ptr);
if(kread_buf(os_dict + OS_DICTIONARY_COUNT_OFF, &os_dict_cnt, sizeof(os_dict_cnt)) == KERN_SUCCESS) {
printf("os_dict_cnt: 0x%" PRIX32 "\n", os_dict_cnt);
while(os_dict_cnt-- != 0 && kread_buf(os_dict_entry_ptr + os_dict_cnt * sizeof(os_dict_entry), &os_dict_entry, sizeof(os_dict_entry)) == KERN_SUCCESS) {
printf("key: " KADDR_FMT ", val: " KADDR_FMT "\n", os_dict_entry.key, os_dict_entry.val);
if(kread_buf(os_dict_entry.key + OS_STRING_LEN_OFF, &cur_key_len, sizeof(cur_key_len)) != KERN_SUCCESS) {
break;
}
cur_key_len = OS_STRING_LEN(cur_key_len);
printf("cur_key_len: 0x%" PRIX32 "\n", cur_key_len);
if(cur_key_len == key_len) {
if(kread_addr(os_dict_entry.key + OS_STRING_STRING_OFF, &string_ptr) != KERN_SUCCESS || string_ptr == 0) {
break;
}
printf("string_ptr: " KADDR_FMT "\n", string_ptr);
if(kread_buf(string_ptr, cur_key, key_len) != KERN_SUCCESS) {
break;
}
if(memcmp(cur_key, key, key_len) == 0) {
val = os_dict_entry.val;
break;
}
}
}
}
}
free(cur_key);
}
return val;
}
static kern_return_t
set_nvram_prop(io_service_t nvram_serv, const char *key, const char *val) {
CFStringRef cf_key = CFStringCreateWithCStringNoCopy(kCFAllocatorDefault, key, kCFStringEncodingUTF8, kCFAllocatorNull), cf_val;
kern_return_t ret = KERN_FAILURE;
if(cf_key != NULL) {
if((cf_val = CFStringCreateWithCStringNoCopy(kCFAllocatorDefault, val, kCFStringEncodingUTF8, kCFAllocatorNull)) != NULL) {
ret = IORegistryEntrySetCFProperty(nvram_serv, cf_key, cf_val);
CFRelease(cf_val);
}
CFRelease(cf_key);
}
return ret;
}
static kern_return_t
sync_nonce(io_service_t nvram_serv) {
if(set_nvram_prop(nvram_serv, "temp_key", "temp_val") == KERN_SUCCESS && set_nvram_prop(nvram_serv, kIONVRAMDeletePropertyKey, "temp_key") == KERN_SUCCESS) {
return set_nvram_prop(nvram_serv, kIONVRAMForceSyncNowPropertyKey, kBootNoncePropertyKey);
}
return KERN_FAILURE;
}
static bool
entangle_nonce(uint64_t nonce, uint8_t entangled_nonce[CC_SHA384_DIGEST_LENGTH]) {
bool ret = false;
#ifdef __arm64e__
# define IO_AES_ACCELERATOR_SPECIAL_KEYS_OFF (0xD0)
# define IO_AES_ACCELERATOR_SPECIAL_KEY_CNT_OFF (0xD8)
io_service_t aes_serv = IOServiceGetMatchingService(kIOMasterPortDefault, IOServiceMatching("IOAESAccelerator"));
struct {
uint32_t generated, key_id, key_sz, val[4], key[4], zero, pad;
} key;
uint64_t buf[] = { 0, nonce };
kaddr_t aes_object, keys_ptr;
uint32_t key_cnt;
size_t out_sz;
if(aes_serv != IO_OBJECT_NULL) {
printf("aes_serv: 0x%" PRIX32 "\n", aes_serv);
if(lookup_io_object(aes_serv, &aes_object) == KERN_SUCCESS) {
printf("aes_object: " KADDR_FMT "\n", aes_object);
if(kread_addr(aes_object + IO_AES_ACCELERATOR_SPECIAL_KEYS_OFF, &keys_ptr) == KERN_SUCCESS) {
printf("keys_ptr: " KADDR_FMT "\n", keys_ptr);
if(kread_buf(aes_object + IO_AES_ACCELERATOR_SPECIAL_KEY_CNT_OFF, &key_cnt, sizeof(key_cnt)) == KERN_SUCCESS) {
printf("key_cnt: 0x%" PRIX32 "\n", key_cnt);
for(; key_cnt-- != 0 && kread_buf(keys_ptr, &key, sizeof(key)) == KERN_SUCCESS; keys_ptr += sizeof(key)) {
printf("generated: 0x%" PRIX32 ", key_id: 0x%" PRIX32 ", key_sz: 0x%" PRIX32 "\n", key.generated, key.key_id, key.key_sz);
if(key.generated == 1 && key.key_id == 0x8A3 && key.key_sz == 8 * kCCKeySizeAES128) {
if(CCCrypt(kCCEncrypt, kCCAlgorithmAES128, 0, key.val, kCCKeySizeAES128, NULL, buf, sizeof(buf), buf, sizeof(buf), &out_sz) == kCCSuccess && out_sz == sizeof(buf)) {
CC_SHA384(buf, sizeof(buf), entangled_nonce);
ret = true;
}
break;
}
}
}
}
}
IOObjectRelease(aes_serv);
}
#else
(void)nonce;
(void)entangled_nonce;
#endif
return ret;
}
void
dimentio_term(void) {
if(tfp0 != TASK_NULL) {
mach_port_deallocate(mach_task_self(), tfp0);
} else if(krw_0 != NULL) {
dlclose(krw_0);
}
setpriority(PRIO_PROCESS, 0, 0);
}
kern_return_t
dimentio_init(kaddr_t _kslide, kread_func_t _kread_buf, kwrite_func_t _kwrite_buf) {
kernrw_0_req_kernrw_func_t kernrw_0_req;
kslide = _kslide;
if(_kread_buf != NULL && _kwrite_buf != NULL) {
kread_buf = _kread_buf;
kwrite_buf = _kwrite_buf;
} else if(init_tfp0() == KERN_SUCCESS) {
printf("tfp0: 0x%" PRIX32 "\n", tfp0);
kread_buf = _kread_buf != NULL ? _kread_buf : kread_buf_tfp0;
kwrite_buf = _kwrite_buf != NULL ? _kwrite_buf : kwrite_buf_tfp0;
} else if((krw_0 = dlopen("/usr/lib/libkrw.0.dylib", RTLD_LAZY)) != NULL) {
printf("libkrw!\n");
kread_buf = kread_buf_krw_0;
kwrite_buf = kwrite_buf_krw_0;
} else if((kernrw_0 = dlopen("/usr/lib/libkernrw.0.dylib", RTLD_LAZY)) != NULL && (kernrw_0_req = (kernrw_0_req_kernrw_func_t)dlsym(kernrw_0, "requestKernRw")) != NULL && kernrw_0_req() == 0 && (kernrw_0_kread = (kernrw_0_kread_func_t)dlsym(kernrw_0, "kernRW_readbuf")) != NULL && (kernrw_0_kwrite = (kernrw_0_kwrite_func_t)dlsym(kernrw_0, "kernRW_writebuf")) != NULL) {
printf("libkernrw!\n");
kread_buf = kread_buf_kernrw_0;
kwrite_buf = kwrite_buf_kernrw_0;
}
if(setpriority(PRIO_PROCESS, 0, PRIO_MIN) != -1 && pfinder_init_offsets() == KERN_SUCCESS) {
return KERN_SUCCESS;
}
dimentio_term();
return KERN_FAILURE;
}
kern_return_t
dementia(uint64_t *nonce, uint8_t entangled_nonce[CC_SHA384_DIGEST_LENGTH], bool *entangled) {
io_service_t nvram_serv = IORegistryEntryFromPath(kIOMasterPortDefault, kIODeviceTreePlane ":/options");
char nonce_hex[sizeof("0x") + 2 * sizeof(*nonce)];
kaddr_t of_dict, os_string, string_ptr;
kern_return_t ret = KERN_FAILURE;
if(nvram_serv != IO_OBJECT_NULL) {
printf("nvram_serv: 0x%" PRIX32 "\n", nvram_serv);
if(find_task(getpid(), &our_task) == KERN_SUCCESS) {
printf("our_task: " KADDR_FMT "\n", our_task);
if(get_of_dict(nvram_serv, &of_dict) == KERN_SUCCESS && of_dict != 0) {
printf("of_dict: " KADDR_FMT "\n", of_dict);
if((os_string = lookup_key_in_os_dict(of_dict, kBootNoncePropertyKey)) != 0) {
printf("os_string: " KADDR_FMT "\n", os_string);
if(kread_addr(os_string + OS_STRING_STRING_OFF, &string_ptr) == KERN_SUCCESS && string_ptr != 0) {
printf("string_ptr: " KADDR_FMT "\n", string_ptr);
if(kread_buf(string_ptr, nonce_hex, sizeof(nonce_hex)) == KERN_SUCCESS && sscanf(nonce_hex, "0x%016" PRIx64, nonce) == 1) {
ret = KERN_SUCCESS;
*entangled = entangle_nonce(*nonce, entangled_nonce);
}
}
}