forked from ErinChen1/EPDN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
42 lines (40 loc) · 1.63 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
### Copyright (C) 2017 NVIDIA Corporation. All rights reserved.
### Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
import os
from collections import OrderedDict
from options.test_options import TestOptions
from data.data_loader import CreateDataLoader
from models.models import create_model
import util.util as util
from util.visualizer import Visualizer
from util import html
import time
opt = TestOptions().parse(save=False)
opt.nThreads = 1 # mytest code only supports nThreads = 1
opt.batchSize = 1 # mytest code only supports batchSize = 1
opt.serial_batches = True # no shuffle
opt.no_flip = True # no flip
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
model = create_model(opt)
visualizer = Visualizer(opt)
# create website
web_dir = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch))
webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.which_epoch))
# mytest
t0 = time.time()
for i, data in enumerate(dataset):
if i >= opt.how_many:
break
generated = model.inference(data['label'], data['inst'])
visuals = OrderedDict([
#('input_label', util.tensor2label(data['label'][0], opt.label_nc)),
#('p2p', util.tensor2im(generated[0].data[0])),
('final', util.tensor2im(generated[1].data[0]))
])
img_path = data['path']
print('process image... %s' % img_path)
visualizer.save_images(webpage, visuals, img_path)
t1 = time.time()
print(str((t1-t0)/500))
webpage.save()