-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathutil.py
214 lines (187 loc) · 7.49 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import torch
import numpy as np
import matplotlib.pyplot as plt
from torch_geometric.data import Data
from torch_geometric_temporal.nn import *
def mape_loss(output, label):
return torch.mean(torch.abs(torch.div((output - label), label)))
def mse_loss(output, label, mean=None):
return torch.mean(torch.square(output - label))
def msse_loss(output, label, mean=None):
return torch.mean(torch.div(torch.square(output - label), label + 1))
def rmse_loss(output, label):
return torch.sqrt(torch.mean(torch.square(output - label)))
def mae_loss(output, label):
return torch.mean(torch.abs(output - label))
def mase_loss(output, label, mean=None):
mean = mean.reshape(output.shape)
label_mean = torch.mean(label)
if not mean is None:
return torch.mean(torch.abs(output - label) / mean)
elif label_mean == 0:
return torch.mean(torch.abs(output - label))
else:
return torch.mean(torch.abs(output - label)) / label_mean
def mase1_loss(output, label, mean=None):
# Extreme 1: all countries equal
# L_i = (x_i - y_i)^2 / y_i
# L = (L_1 + L_2 + … + L_N) / N
label = label[:, 0]
output = output.reshape(output.shape[0])
label_mean = torch.mean(label)
if not mean is None:
return torch.mean(torch.abs(output - label) / mean)
if label_mean == 0:
return torch.mean(torch.abs(output - label))
else:
return torch.mean(torch.abs(output - label)) / label_mean
def mase2_loss(output, label, mean=None):
# Extreme 2: all people equal
# X = (x_1 + x_2 + … + x_N)
# Y = (y_1 + y_2 + … + y_N)
# L = (X - Y)^2 / Y
label = label[:, 0]
X = torch.sum(output)
Y = torch.sum(label)
if Y == 0 and not mean is None:
return torch.abs(X - Y) / torch.sum(mean)
elif Y == 0:
return torch.abs(X - Y)
else:
return torch.abs(X - Y) / Y
def anti_lag_loss(output, label, lagged_label, mean=None, loss_func=mase2_loss, penalty_factor=0.1):
output = output.reshape(output.shape[0])
lagged_label = lagged_label.reshape(lagged_label.shape[0])
# Or instead of penalty factor (or with it) should I be using the same loss function and taking the inverse square of that to ensure good scaling?
penalty = torch.mean(torch.div(1, torch.square(output - lagged_label)))
return loss_func(output, label, mean=mean) + penalty * penalty_factor
def lag_factor(output, lagged_label):
return torch.div(torch.abs(output - lagged_label), lagged_label)
def mase3_loss(output, label, populations, mean=None, k=500000):
# Middle point: consider a population threshold k
# x_k = sum(x_i) such that country i has less than k population
# y_k = sum(y_i) such that country i has less than k population
# L_i = (x_i - y_i)^2 / y_i for countries i with more than k population
# L_k = (x_k - y_k)^2 / y_k
# L = L_k + sum(L_i)
label = label[:, 0]
if mean is None:
mean = torch.mean(label)
if sum(mean) == 0:
mean = 1
large_outputs = []
large_labels = []
large_means = []
small_outputs = []
small_labels = []
small_means = []
for i in range(len(populations)):
if populations[i] < k:
small_outputs.append(output[i])
small_labels.append(label[i])
small_means.append(mean[i])
else:
large_outputs.append(output[i])
large_labels.append(label[i])
large_means.append(mean[i])
x_k = sum(small_outputs)
y_k = sum(small_labels)
L_i = torch.abs(torch.FloatTensor(large_outputs) - torch.FloatTensor(large_labels)) / torch.FloatTensor(large_means)
L_k = abs(x_k - y_k) / sum(small_means)
return L_k + torch.sum(L_i)
def inv_reg_mase_loss(output, label):
return mase_loss(output, label) + torch.mean(torch.div(1, output))
def train_gnn(model, loader, optimizer, loss_func, device):
model.train()
loss_all = 0
for data in loader:
data = data.to(device)
optimizer.zero_grad()
output = model(data)
label = data.y.to(device)
output = torch.reshape(output, label.shape)
loss = loss_func(output, label)
loss.backward()
loss_all += data.num_graphs * loss.item()
optimizer.step()
return loss_all
def evaluate_gnn(model, loader, device):
model.eval()
predictions, labels = [], []
with torch.no_grad():
for data in loader:
data = data.to(device)
pred = model(data).detach().cpu().numpy()
label = data.y.detach().cpu().numpy()
pred = pred.reshape(label.shape)
predictions.append(pred)
labels.append(label)
p = np.vstack(predictions)
l = np.vstack(labels)
return np.mean(np.abs(p - l)) / np.mean(l) #np.mean(abs((labels - predictions) / labels)) #reporting loss function, different from training
def evaluate_gnn_recurrent(model, dataset, lookback_pattern, loss_func):
predictions, labels, losses = [], [], []
def forward(snapshot, h, c, detach=False):
if type(model) is GConvLSTM or type(model) is GConvGRU:
h, c = model(snapshot.x, snapshot.edge_index, snapshot.edge_attr[:, 0], h, c)
if detach:
h = h.detach()
c = c.detach()
return h, h, c
else:
return model(snapshot, h, c)
model.eval()
with torch.no_grad():
cost = 0
for time, snapshot in enumerate(dataset):
h, c = None, None
for sub_time in range(len(lookback_pattern)):
sub_snapshot = Data(x=snapshot.x[:, sub_time:sub_time + 1], edge_index=snapshot.edge_index,
edge_attr=snapshot.edge_attr)
y_hat, h, c = forward(sub_snapshot, h, c, detach=True)
predictions.append(y_hat)
labels.append(snapshot.y)
cost += loss_func(y_hat, snapshot.y)
cost /= time + 1
cost = cost.item()
losses.append(cost)
return predictions, labels, losses
def show_predictions(predictions, labels):
# Plot predictions and labels over time
x = np.arange(0, len(predictions['train']))
plt.title('COVID Europe Dataset')
plt.xlabel("Time (days)")
plt.ylabel("New Cases")
plt.plot(x, [torch.mean(p) for p in predictions['train']], label="Predictions")
plt.plot(x, [torch.mean(l) for l in labels['train']], label="Labels")
# plt.plot(x, [1000*mase_loss(predictions[i], labels[i]) for i in range(len(predictions))], label="Loss")
plt.legend()
plt.show()
def show_loss_by_country(predictions, labels, nations, plot=True):
losses = {}
if plot:
# Plot loss by country over time
x = np.arange(0, len(predictions))
plt.title('Loss by Country')
plt.xlabel("Time (days)")
plt.ylabel("MASE Loss")
for i in range(len(nations)):
# Compute MAE loss for each example
loss = [float(mae_loss(predictions[time][i], labels[time][i])) for time in range(len(predictions))]
losses[nations[i]] = loss
if plot:
plt.plot(x, loss, label=nations[i])
if plot:
plt.show()
return losses
def show_labels_by_country(labels, nations):
# Plot labels by country over time
x = np.arange(0, len(labels))
plt.title('New Cases by Country')
plt.xlabel("Time (days)")
plt.ylabel("New COVID Cases")
for i in range(5):
label = [torch.mean(l[i]) for l in labels]
plt.plot(x, label, label=nations[i])
print(nations[i] + ": " + str(int(sum(label)/len(label))))
plt.show()