-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathDEGLOW_test.py
107 lines (83 loc) · 4.99 KB
/
DEGLOW_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import time, itertools
from dataset import ImageFolder
from torchvision import transforms
from torch.utils.data import DataLoader
from networks import *
from utils import *
from glob import glob
from PIL import Image
from cv2 import resize
IMG_EXTENSIONS = [
'.jpg', '.JPG', '.jpeg', '.JPEG',
'.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP',
]
class GAPSF(object) :
def __init__(self, args):
self.result_dir = args.result_dir
self.dataset = args.dataset
self.datasetpath = args.datasetpath
self.n_res = args.n_res
self.ch = args.ch
self.img_size = args.img_size
self.have_gt = args.have_gt
print("# dataset : ", self.dataset)
print("# datasetpath : ", self.datasetpath)
def build_model(self):
self.test_transform = transforms.Compose([
transforms.Resize((self.img_size, self.img_size)),
transforms.ToTensor(),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
])
self.testA = ImageFolder(os.path.join('dataset', self.datasetpath), self.test_transform)
self.testA_loader = DataLoader(self.testA, batch_size=1, shuffle=False)
self.genA2B = ResnetGenerator(input_nc=3, output_nc=3, ngf=self.ch, n_blocks=self.n_res, img_size=self.img_size).to('cuda')
def load(self, dir, name):
params = torch.load(os.path.join(dir, name))
self.genA2B.load_state_dict(params['genA2B'])
def test(self):
model_list = glob(os.path.join(self.result_dir, self.dataset, 'model', '*.pt'))
model_filename = os.path.basename(model_list[-1])
print(os.path.join(self.result_dir, self.dataset, 'model'), model_filename)
self.load(os.path.join(self.result_dir, self.dataset, 'model'), model_filename)
print(" [*] Load SUCCESS")
self.genA2B.eval()
path_realA=os.path.join(self.result_dir, self.dataset, 'input')
if not os.path.exists(path_realA):
os.makedirs(path_realA)
path_fakeB=os.path.join(self.result_dir, self.dataset, 'output')
if not os.path.exists(path_fakeB):
os.makedirs(path_fakeB)
path_AB=os.path.join(self.result_dir, self.dataset,'input_output')
if not os.path.exists(path_AB):
os.makedirs(path_AB)
self.input_list = [os.path.splitext(f) for f in os.listdir(os.path.join(self.datasetpath)) if any(f.endswith(suffix) for suffix in IMG_EXTENSIONS)]
for n, in_name in enumerate(self.input_list):
img_name = in_name[0]
im_suf = in_name[-1]
print('predicting: %d / %d' % (n + 1, len(self.input_list)))
img = Image.open(os.path.join('dataset', self.datasetpath, img_name + im_suf)).convert('RGB')
img_width, img_height =img.size
real_A = (self.test_transform(img).unsqueeze(0)).to('cuda')
fake_A2B, _, _ = self.genA2B(real_A)
A_real = RGB2BGR(tensor2numpy(denorm(real_A[0])))
B_fake = RGB2BGR(tensor2numpy(denorm(fake_A2B[0])))
A_real = resize(A_real, (img_width, img_height))
B_fake = resize(B_fake, (img_width, img_height))
A2B = np.concatenate((A_real, B_fake), 1)
if self.have_gt == True:
if self.dataset == 'NHM':
print('NHM',os.path.join('dataset', self.datasetpath.replace('testA','testB'), img_name.replace('_NighttimeHazy','_lowLight') + im_suf))
ref = Image.open(os.path.join('dataset', self.datasetpath.replace('testA','testB'), img_name.replace('_NighttimeHazy','_lowLight') + im_suf)).convert('RGB')
elif self.dataset == 'NHC':
print('NHC',os.path.join('dataset', self.datasetpath.replace('testA','testB'), img_name.replace('_nightHazy','_lowLight') + im_suf))
ref = Image.open(os.path.join('dataset', self.datasetpath.replace('testA','testB'), img_name.replace('_nightHazy','_lowLight') + im_suf)).convert('RGB')
else:
#ref = Image.open(os.path.join('dataset', self.datasetpath.replace('hazy','gt'), img_name + im_suf)).convert('RGB')
ref = Image.open(os.path.join('dataset', self.datasetpath.replace('testA','testB'), img_name + im_suf)).convert('RGB')
ref_A = (self.test_transform(ref).unsqueeze(0)).to('cuda')
A_ref = RGB2BGR(tensor2numpy(denorm(ref_A[0])))
A_ref = resize(A_ref, (img_width, img_height))
A2B = np.concatenate((A_real, A_ref, B_fake), 1)
cv2.imwrite(os.path.join(path_realA, '%s%s' % (img_name, im_suf)), A_real * 255.0)
cv2.imwrite(os.path.join(path_fakeB, '%s%s' % (img_name, im_suf)), B_fake * 255.0)
cv2.imwrite(os.path.join(path_AB, '%s%s' % (img_name, im_suf)), A2B * 255.0)