Skip to content

Latest commit

 

History

History
141 lines (114 loc) · 3.81 KB

README.md

File metadata and controls

141 lines (114 loc) · 3.81 KB

Pro-Scraper Frontend (Repo) | Pro-Scraper Hosted/API (Repo)

  • Clone repository to local machine
  • install python, pip & mysql
  • install python requirements.txt
  • install mysql server ("winget install -e Oracle.MySQL" in terminal | or manual install from mysql website)
  • setup mysql server, create user (make sure to grant all privileges | or use root user instead)
  • sometimes you are required to set current use db (Set current database: "use <database_name>;")
  • add user & mysql credentials to config.py
  • start mysql server
  • run python3 app.py
  • open browser and go to http://localhost:5000
  • Try scraping something. The more you scrape the more optimized it gets over time.
  • you dont have to export data as csv, you can use the API to get data in JSON format or even better use the Database directly to fetch data.locally.
  • fiddle around and have fun !

Search API

  • URL

    /api/search /api/quick_search /api/deep_search


  • Method:

  • GET

  • POST

  • URL Params

    • Required: searchQuery=[string]
  • Data Params

  • searchQuery=[string]

  • Success Response:

    • Code: 200 Content: { searchQuery : "iphone 13" }
  • Error Response:

  • Code: 404 NOT FOUND Content: { error : "No results found" }

  • Sample Call:

    $.ajax({
      url: "http://localhost:5000/api/search?searchQuery=iphone+13",
      dataType: "json",
      type: "GET",
      success: function (r) {
        console.log(r);
      },
    });
    $.ajax({
      url: "http://localhost:5000/api/search",
      dataType: "json",
      type: "POST",
      data: { searchQuery: "iphone 13" },
      success: function (r) {
        console.log(r);
      },
    });

## Other Endpoints :
  • api/search/product
  • api/search/product_quick
  • api/search/product_deep
  • api/search/reviews
  • api/search/reviews_quick
  • api/search/reviews_deep
  • api/search/search
  • api/search/search_quick
  • api/search/search_deep

Related Papers :

Comparative Web Product Analysis: A Data-Driven Approach

If you use this project, plz cite or add reference to it :

@INPROCEEDINGS{10452652,
  author={Jonathan, Jesvi and Muthusundar, S. K.},
  booktitle={2023 International Conference on Data Science, Agents & Artificial Intelligence (ICDSAAI)}, 
  title={Comparative Web Product Analysis: A Data-Driven Approach}, 
  year={2023},
  volume={},
  number={},
  pages={1-4},
  keywords={Sentiment analysis;Decision making;Data visualization;Pricing;Aerodynamics;Real-time systems;Electronic commerce;E-commerce;Data Scraping;Machine Learning;Data Optimization;Decision Making;Data Analysis},
  doi={10.1109/ICDSAAI59313.2023.10452652}}