-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfirsttest.R
186 lines (148 loc) · 4.39 KB
/
firsttest.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# A nice small script to provide some graphic insight to test grade distributions.
library(foreign)
# setwd("")
fontsize=10
# A function to draw a distribution normal curve over the histogram:
# (Thanks to Peter Dalgaard)
addNorm <- function(data,color,linewidth) {
xfit<-seq(min(data),max(data),length=80)
yfit<-dnorm(xfit,mean=mean(data),sd=sd(data))
yfit <- yfit*diff(h$mids[1:2])*length(data)
lines(xfit, yfit, col=color, lwd=linewidth)
return
}
addText <- function(xcoord,ycoord,avg,sd,med) {
text(xcoord,ycoord,labels=paste("µ = ",avg,sep=""), cex=1.4)
text(xcoord,(ycoord-0.5),labels=paste("σ = ",sd,sep=""),cex=1.4)
text(xcoord,(ycoord-1.0),labels=paste("med. = ",med,sep=""),cex=1.4)
return
}
flatTop <- function(datavector,topofrange) {
for(i in 1:length(datavector)) {
if (datavector[i]>topofrange) { datavector[i]=topofrange }
}
return(datavector)
}
# get grades for the first exam:
grades<-read.table("firsttest.tab", sep = "\t", header=TRUE, fill=TRUE)
attach(grades)
# Create summary statistics for Exam 1 raw values:
minimum=min(Exam1RAW)
maximum=max(Exam1RAW)
avg<-round(mean((Exam1RAW)),digits=1)
sd<-round(sd(Exam1RAW),digits=1)
mediangrade<-median(Exam1RAW)
png(filename="test1rawhistogram.png",
res=300,
bg="white",
type="quartz",
pointsize=fontsize,
width=6, height=6,
units="in"
)
# Histogram
h<-hist(Exam1RAW,
breaks=5,
col="gray",
main="Histogram of Original Grades on the First Exam",
xlab="Grades",
ylim=c(0,10)
)
# Annotation text:
addText(xcoord=44,ycoord=8.5,avg=avg,sd=sd,med=mediangrade)
text(70,8.0,labels=paste(paste(paste("Range: [",minimum,sep=""),maximum,sep=","),"]",sep=""),cex=1.2)
#text(50,6.75,labels=paste("Raw Min = ",minimum,sep=""),cex=1.4)
#text(50,6.25,labels=paste("Raw Max = ",maximum,sep=""),cex=1.4)
dev.off()
# Second Histogram
png(filename="test1histogram.png",
res=300,
bg="white",
type="quartz",
pointsize=fontsize,
width=6, height=6,
units="in"
)
curve1<-flatTop((Exam1RAW+Curve),100)
avg<-round(mean((curve1)),digits=1)
sd<-round(sd(curve1),digits=1)
mediangrade<-median(curve1)
minimum=min(curve1)
maximum=max(curve1)
h<-hist(curve1,
breaks=5,
col="gray",
main="Histogram of Curved Grades on the First Exam",
cex=1.0,
xlab="Grades",
ylim=c(0,10)
)
# Normal Curve (note--doesn't care if the distribution is not normal):
#addNorm(data=ComputedScore,color="red",linewidth=2)
# Annotation text:
addText(xcoord=50,
ycoord=8.5,
avg=avg,
sd=sd,
med=mediangrade
)
text(50,6.9,
labels=paste(paste(paste("Range: [",minimum,sep=""),maximum,sep=","),"+]",
sep=""),
cex=1.2
)
#text(50,6.75,labels=paste("Raw Min = ",minimum,sep=""),cex=1.4)
#text(50,6.25,labels=paste("Raw Max = ",maximum,sep=""),cex=1.4)
dev.off()
# Last Histogram:
set1<-flatTop(ComputedScore,100)
avg<-round(mean((set1)),digits=1)
sd<-round(sd(set1),digits=1)
mediangrade<-median(set1)
png(filename="test1histogram_withnormal.png",
res=300, bg="white",
type="quartz",
pointsize=fontsize,
width=6, height=6,
units="in"
)
# Draw histogram
h<-hist(set1,breaks=5,
col="gray",
main="Histogram of Curved Grades on the First Exam\nPlus Attendance Bonus Quiz Yesterday",
cex=1.0,
xlab="Grades",
ylim=c(0,10)
)
# Normal Curve (note--doesn't care if the distribution is not normal):
addNorm(data=set1,color="red",linewidth=2)
# Annotation text:
addText(xcoord=54,ycoord=7.75,avg=avg,sd=sd,med=mediangrade)
#text(50,6.75,labels=paste(paste(paste("Raw Range: [",minimum,sep=""),maximum,sep=","),"]",sep=""),cex=1.2)
dev.off()
# Time to complete the exam: did it affect scores at all?
png(filename="test1timescatterplot.png",
res=300, bg="white",
type="quartz",
pointsize=fontsize,
width=6,height=6,
units="in"
)
grades$time<-(grades$TimeTurnedIn-1200)
# for tests less than two hours long:
for(i in 1:length(grades$time)){
if (grades$time[i]>=100){
grades$time[i]<-grades$time[i]-40
}
}
plot(grades$time,
grades$Exam1RAW,
xlab="Time to Complete Exam",
ylab="Raw Exam Score",
main="Test Score as a Function of Time to Finish"
)
gradetime<-lm(grades$Exam1RAW~grades$time, data=grades)
abline(gradetime,col="red")
dev.off()
detach(grades)
# EOF