-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbivariate.R
39 lines (33 loc) · 1.17 KB
/
bivariate.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# This code plots simulated bivariate normal distributions
# in a false 3D that looks nice.
# Some variable definitions
mu1 <- 0 # expected value of x
mu2 <- 0 # expected value of y
sig1 <- 1 # variance of x
sig2 <- 1 # variance of y
rho <- 0.5 # corr(x, y)
# Some additional variables for x-axis and y-axis
xm <- -4
xp <- 4
ym <- -4
yp <- 4
x <- seq(xm, xp, length= as.integer((xp + abs(xm)) * 10)) # vector series x
y <- seq(ym, yp, length= as.integer((yp + abs(ym)) * 10)) # vector series y
# Core function
bivariate <- function(x,y){
term1 <- 1 / (2 * pi * sig1 * sig2 * sqrt(1 - rho^2))
term2 <- (x - mu1)^2 / sig1^2
term3 <- -(2 * rho * (x - mu1)*(y - mu2))/(sig1 * sig2)
term4 <- (y - mu2)^2 / sig2^2
z <- term2 + term3 + term4
term5 <- term1 * exp((-z / (2 *(1 - rho^2))))
return (term5)
}
# Computes the density values
z <- outer(x,y,bivariate)
# Plot
persp(x, y, z, main = "Bivariate Normal Distribution",
sub = bquote(bold(mu[1])==.(mu1)~", "~sigma[1]==.(sig1)~", "~mu[2]==.(mu2)~
", "~sigma[2]==.(sig2)~", "~rho==.(rho)),
col="orchid2", theta = 55, phi = 30, r = 40, d = 0.1, expand = 0.5,
ltheta = 90, lphi = 180, shade = 0.4, ticktype = "detailed", nticks=5)