-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrapezoid_crop_gui.py
94 lines (71 loc) · 2.73 KB
/
trapezoid_crop_gui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import os
import cv2
import sys
import numpy as np
from math import sqrt
import os.path as osp
import argparse
path = osp.dirname(osp.abspath(__file__))
from MousePts import MousePts
def get_euclidian_distance(pt1, pt2):
return np.sqrt((pt1[0]-pt2[0])**2 + (pt1[1]-pt2[1])**2)
def apply_transform(point_list,M):
out_point_list= (cv2.perspectiveTransform(np.array(point_list),M)).astype(int)
return out_point_list
def trapezoidHandCrop(image, ht=None, wd=None):
"""
Function that asks user to click on four corner points of trapezoidal shape and
generates rectangular transformed image of selected trapezoid. ht and wd are height and
width of final crop image, by default it will be calculated based on input points.
"""
image_copy = image.copy()
rows, cols = image.shape[:2]
if 1:
src_points = MousePts().select_roi(image_copy)
src_points = np.float32(src_points)
np.savetxt('pts.txt', src_points)
else:
src_points = np.loadtxt('pts.txt')
print('src_points:',src_points)
pt1, pt2, pt3, pt4 = src_points
w1 = get_euclidian_distance(pt2, pt1)
h1 = get_euclidian_distance(pt2, pt3)
w1 = wd if wd is not None else w1 #assign crop width as user's input
h1 = ht if ht is not None else h1 #assign crop height as user's input
x1, y1 = 0, 0
dst_points = np.float32([[x1,y1], [x1 + w1, y1], [x1 + w1, y1 + h1], [x1, y1 + h1]])
M = cv2.getPerspectiveTransform(src_points, dst_points)
crop_image = cv2.warpPerspective(image_copy, M, (int(w1), int(h1)))
pointsOut = convert_pts(src_points, M)
print('pointsOut: ', pointsOut)
return crop_image
def convert_pts(boxpoints, M):
boxpoints = np.float32(boxpoints)
warp_boxes = []
for b in boxpoints:
b = np.array(b).reshape(1, 1, 2)
w_b = apply_transform(b, M)
w_box_pt = list(w_b[0][0])
warp_boxes.append(w_box_pt)
return warp_boxes
def Get_warped_image(img, M=None):
rows, cols = img.shape[:2]
warped = cv2.warpPerspective(img, M, (cols, rows))
return warped
if __name__=='__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-p',"--path" , default='crops/18.png', help="path of image")
args = parser.parse_args()
imgPath = args.path
image = cv2.imread(imgPath)
crop_img = trapezoidHandCrop(image)
path='crops'
if not os.path.exists(path):
os.makedirs(path)
basename = os.path.basename(imgPath)
#import pdb;pdb.set_trace()
filename = os.path.splitext(basename)[0]+'.png'
cv2.imwrite(os.path.join(path, filename),crop_img)
cv2.namedWindow('Cropped', cv2.WINDOW_NORMAL)
cv2.imshow('Cropped', crop_img)
cv2.waitKey(0)