-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathscan1.py
305 lines (262 loc) · 12.4 KB
/
scan1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
#!/home/john/.virtualenvs/cv/bin/python
# scan binary image to find columns with non-zero pixels
# print start-index and length of each (non-zero) block of pixels
# J.Beale 14-June-2019 - 07-Jan-2022
import os # for file basename extraction
import sys # for command line arguments
import cv2
import numpy as np
# import matplotlib.pyplot as plt
# averaged background level of doppler spectrogram
bk257 = np.array(
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 7, 11, 13, 15,
16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18,
19, 19, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21,
21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 23, 22, 22, 23, 23, 23, 23, 23,
23, 23, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26,
26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 28, 27, 28, 28, 28, 28, 28, 28,
29, 29, 29, 29, 29, 29, 29, 30, 30, 30, 30, 30, 31, 31, 31, 31, 31, 31,
31, 32, 32, 32, 32, 32, 32, 32, 32, 33, 33, 33, 33, 33, 33, 33, 34, 34,
34, 34, 34, 34, 35, 35, 35, 35, 35, 35, 35, 36, 36, 36, 36, 36, 36, 37,
37, 37, 37, 37, 37, 37, 38, 38, 38, 37, 38, 38, 39, 39, 38, 38, 39, 39,
39, 39, 39, 39, 39, 39, 39, 39, 40, 40, 40, 40, 40, 40, 40, 40, 40, 41,
40, 40, 40, 41, 41, 41, 40, 41, 41, 41, 41, 41, 41, 41, 41, 41, 40, 41,
41, 41, 41, 40, 40, 41, 40, 40, 40, 40, 40, 39, 39, 38, 38, 38, 37, 37,
36, 35, 34, 33, 32, 31, 30, 28, 26, 24, 22, 19, 15, 12, 8, 5, 2, 0,
0, 0, 0, 0, 0 ])
bkcol = np.asarray(bk257, dtype="uint8") # background level, one column
pixelsPerFile = 3000 # 10 pixels per second
secondsPerFile = 5.0 * 60 # each file = 5 minutes
velMax = 0 # highest detected event speed
velMaxName = "" # max speed description
# -----------------------
# scan through 1D array, find index & length of contiguous non-zero elements
# returns: list of objects
def findObj(suba):
objnum = 0
offset = 0 # running sum from past object index offsets
objs = [] # initialize list of objects
colCnt = suba.size # how many columns in original image
# print("Cols: %d" % (colCnt))
while True:
maxT = np.amax(suba) # overall maximum (0 = nothing detected anywhere)
if (maxT == 0):
return objs
objnum += 1
imax = np.argmax(suba) # find index of 1st maximum
suba = suba[imax:]
s=suba.size
imin = np.argmin(suba) # find next 0 elements
if (imin == 0):
imin = colCnt - (imax+offset)
eflag = True
else:
eflag = False
# if imin=0 that means the object extends past right-hend edge of data
# print("%d: x=%d, size=%d" % (objnum, imax+offset, imin), end ="")
#start index, length
objs += [[imax+offset, imin]]
if (eflag): # object went up to RH edge
# print(", EF")
return objs
# else:
# print("")
suba = suba[imin:]
offset = offset + imax + imin # index of new 'suba' in original
# -------------------------------------------
# scan one image for objects
# return count of events found, and total # of x pixels within events
# and 1 column of pixels averaged all rows, of background (non-event columns)
# and noise blip count
# and pedestrian count
def doOneImg(src_path, f):
# sox $f -n rate 8k spectrogram -Z -40 -z 28 -x 3000 -y 257 -m -r
# 256 => 8/2 or 4 kHz, 71.5667 Hz/mph => 55.89 mph
global velMax # highest detected event speed
global velMaxName # max speed description
Vscale = 55.89 # mph at full-scale (top pixel row of spectrogram)
durThresh = 15 # at least 15 pixels (1.5 seconds) for object to be "real"
blips = 0
pedVthresh = 5 # peds slower than this (mph)
pedTthresh = 30 # ped event longer than this (deci-seconds)
peds = 0 # pedestrian events: <5 mph and >3 sec duration
carVthresh = 5 # cars are at least this fast (mph)
carTthresh = 20 # cars last at least this long (deci-seconds)
cars = 0 # vehicle events: >5 mph at >2 sec duration
eSum = np.zeros((1,1)) # 1-elem matrix
margin = 10 # buffer pixels after detected object to include in region
# print(src_path, end=" : ")
raw_path = src_path[4:] # remove first 4 chars
img1 = cv2.imread(src_path, 0) # detected image 0 imports a grayscale
raw_img = cv2.imread(raw_path, 0) # original raw doppler spectrogram
if ((img1 is None) or (raw_img is None)):
return (0,0, np.asarray(0, dtype="uint8"), blips, cars, peds)
ysize = np.size(img1, 0)
# print("ysize = %d" % ysize) # DEBUG eg. 257 (256+1)
xTotal = 0 # total x pixels in events so far
nzcols = np.amax(img1,0) # maximum value in each column
olist = findObj(nzcols) # list with position & size (x-pixelcount) of objects
eCount = len(olist) # number of events found
if (eCount > 0):
xstart = 0 # start of current area of interest
# print(raw_path)
for x in olist: # step through list of events
xpos = x[0] # starting index of this object
xsize = x[1] # x pixels included in this object
# print("%d,%d " % (xpos, xsize), end="")
xpos2 = min(xpos+xsize+margin,nzcols.size-1) # end index of region
dEvent = img1[:, xpos:xpos+xsize] # crop of this event in 0,255 mask
dE_vb = cv2.blur(dEvent,(1,31)) # vertical blur to find near-verticals
dE_hb = cv2.blur(dEvent,(31,1)) # horizontal blur to find speed
thresh = 128 # thresholding at 50% seems to work ok
# separate out horizontal and vertical features
ret,dEv_th = cv2.threshold(dE_vb,thresh,255,cv2.THRESH_BINARY)
ret,dEh_th = cv2.threshold(dE_hb,thresh,255,cv2.THRESH_BINARY)
dEh_1d = np.sum(dEh_th, axis=0) # sum over vertical axis
# print(np.shape(dEh_th), dEh_1d) # 1D summary of horizontal part
dEh_size = np.count_nonzero(dEh_1d) # horizontal size of hor.component
if (dEh_size < durThresh):
blips += 1
continue # skip processing if event was too short
Mv = cv2.moments(dEv_th) # find moments of mostly-vertical object
Mh = cv2.moments(dEh_th) # find moments of mostly-horizontal object
Mv0 = Mv["m00"]
Mh0 = Mh["m00"]
# only if both V,H features actually exist, and not a short blip
if (Mv0 > 0) and (Mh0 > 0):
cXv = int(Mv["m10"] / Mv0)
cYv = int(Mv["m01"] / Mv0)
# only valid to find direction if this is single, not overlapping events
dfrac = cXv/xsize # <0.5 overtaking(to right), >.5 oncoming (to left)
cXh = int(Mh["m10"] / Mh0)
cYh = int(Mh["m01"] / Mh0)
vel = (Vscale * (ysize-cYh)-1)/ysize # zero velocity is within range
ePath = "E_" + raw_path[:-4] + "_" + str(xpos) + ".png"
if (dfrac > 0.5):
dir=0 # 0=L: heading left (oncoming)
else:
dir=1 # 1=R: heading right (overtaking)
if ((vel < pedVthresh) and (dEh_size > pedTthresh)):
peds += 1 # another pedestrian
if ((vel >= carVthresh) and (dEh_size > carTthresh)):
cars += 1 # another pedestrian
# print("(%d,%d) dir:%s V:%3.1f %s" % (cXv,cYv,dir,vel,ePath))
#print("%04.1f, %d, %d, %s" % (vel,dir,dEh_size,ePath))
f.write("%04.1f, %d, %d, %s\n" % (vel,dir,dEh_size,ePath))
if (vel > velMax):
velMax = vel # remember highest speed
velMaxName = ePath
# cv2.imwrite(ePath,cv2.add(dEv_th,dEh_th)) # save image to disk
if (xTotal == 0): # for the very first region
eSum = raw_img[:, xstart:xpos] # empty area before event
rSum = raw_img[:, xpos:xpos2] # 1st event (raw img)
rSum1 = img1[:, xpos:xpos2] # 1st event (detected img)
else:
eregion = raw_img[:, xstart:xpos]
region = raw_img[:, xpos:xpos2]
eSum = np.concatenate((eSum, eregion), axis=1) # combine non-events
rSum = np.concatenate((rSum, region), axis=1) # combine events
rSum1 = np.concatenate((rSum1, img1[:,xpos:xpos2]), axis=1) # combine events
xstart = xpos2 # advance area of interest past current one
xTotal += x[1] # count total x pixels in all events
if (eSum.size != 1):
eregion = raw_img[:, xstart:] # include remaining unused pixels, if any
eSum = np.concatenate((eSum, eregion), axis=1) # all non-event area
eAvg = np.mean(eSum, axis=1) # avg of each row across non-event bkgnd
else:
eAvg = np.mean(raw_img, axis=1) # if no events, everything is bkgnd
else:
eAvg = np.mean(raw_img, axis=1) # if no events, everything is bkgnd
# print()
# print(eAvg.astype(int)) # DEBUG print out background average column
ShowImage = False # whether to show events from each image
#ShowImage = True # whether to show events from each image
if (xTotal > 0) and ( ShowImage ):
(y,x) = rSum.shape # find dimensions of array
# print("x:%d y:%d" % (x,y))
blur = cv2.blur(rSum,(9,3))
bk2 = np.transpose(np.tile(bkcol,(x,1)))
fg = cv2.subtract(blur, bk2) # subtract background to see foreground
cv2.imshow('events',rSum) # DEBUG display regions with events
cv2.imshow('events_det',rSum1) # DEBUG display regions with events
# cv2.imshow('events w/blur',blur) # DEBUG display regions with events
# cv2.imshow('background',bk2) # DEBUG display regions with events
cv2.imshow('foreground',fg) # DEBUG display regions with events
#cv2.imshow('non-event',eSum) # DEBUG display regions without events
cv2.waitKey(0)
return (eCount, xTotal, np.asarray(eAvg, dtype="uint8"), blips, cars, peds)
#--------------------------------------------------
# main program starts here
arguments = len(sys.argv) - 1
if (arguments < 1):
print ("Usage: %s directory [A|B]" % (sys.argv[0]))
exit()
src_dir = sys.argv[1] # input directory is 1st argument on command line
directory = os.fsencode(src_dir)
fstart = "Det_DpA"
# fstart = "Det_DpB"
arg2 = sys.argv[2]
if (arguments > 1):
slen = len(arg2)
# print("arg = %s String length = %d" % (arg2,slen))
if (slen == 1):
fstart = "Det_Dp" + arg2
fname_out = "Log" + arg2 + ".csv"
fout = open(fname_out, 'w') # output data to csv file
fout.write("mph, dir, decisec, fname\n") # csv column headers
fCount = 0 # how many files processed so far
totalEvents = 0 # count of all events so far
totalXPixels = 0 # all x pixels in events so far
blipSum = 0 # all noise blips so far
carSum = 0 # total # vehicles
pedSum = 0 # total # pedestrians
firstImg = True
for file in sorted(os.listdir(directory)):
filename = os.fsdecode(file)
if filename.endswith(".png") and filename.startswith(fstart):
# print(filename)
(tE, tX, bS, blips, cars, peds ) = doOneImg(filename, fout)
print("%d, %d, %s" % (cars, peds, filename)) # debug output
if (firstImg):
bSum = bS # background
firstImg = False
cSize = bS.size # how may elements in this 1D array?
else:
# generate averaged bkgnd vs.time
bSum = np.append(bSum, bS)
totalEvents += tE # total events seen
totalXPixels += tX # total x pixels in all events
carSum += cars
pedSum += peds
blipSum += blips
fCount += 1
continue
else:
continue
print("Total events = %d" % totalEvents)
if (totalEvents > 0):
avgXPixels = (1.0 * totalXPixels) / totalEvents
hours = (fCount * secondsPerFile) / (60.0*60.0)
print("# --------------- ")
print("# Files:%d Hours:%5.3f Cars:%d Peds:%d Cars/Hr:%5.3f Avg.Secs:%5.3f Blips:%d" %
(fCount, hours, carSum, pedSum, carSum/hours, avgXPixels/10, blipSum))
print("# Max speed: %5.1f mph : %s" % (velMax, velMaxName))
np.set_printoptions(precision=1, suppress=True)
#bImg = np.transpose(bSum.reshape(fCount, cSize))
#(ys, xs) = bImg.shape
# print(xs, ys, bImg.dtype)
#bkAvg = np.mean(bImg, axis=1)
#p0 = np.add(np.full((257),0.49),bkAvg)
#p1 = np.asarray(p0, dtype="uint8")
#print(np.array2string(p1, separator=', '))
# print(bkAvg)
#diff = bkAvg - bk257
#print(diff) # difference in background of this set of files from preset
#print("# (Min,Max) of diff: (%3.1f,%3.1f)" % (diff.min(), diff.max()) )
if ( False ):
cv2.imwrite("avgBackground.png",bImg) # save image to disk
cv2.imshow('Background vs. Time',bImg) # background vs time
cv2.waitKey(0)
fout.close()
raise SystemExit # DEBUG quit here
# -------------------------------------------